• Title/Summary/Keyword: Multichannel Audio Coding System

Search Result 3, Processing Time 0.017 seconds

Design and Development of T-DMB Multichannel Audio Service System Based on Spatial Audio Coding

  • Lee, Yong-Ju;Seo, Jeong-Il;Beack, Seung-Kwon;Jang, Dae-Young;Kang, Kyeong-Ok;Kim, Jin-Woong;Hong, Jin-Woo
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.365-375
    • /
    • 2009
  • In this paper, a terrestrial digital multimedia broadcasting (T-DMB) multichannel audio broadcasting system based on spatial audio coding is presented. The proposed system provides realistic multichannel audio service via T-DMB with a small increase of data rate as well as backward compatibility with the conventional stereo-based T-DMB player. To reduce the data rate for additional multichannel audio signals, we compress the multichannel audio signals using the sound source location cue coding algorithm, which is an efficient parametric multichannel audio compression technique. For compatibility, we use the dependent property of an elementary stream descriptor, and this property should be ignored in a conventional T-DMB player. To verify the feasibility of the proposed system, we implement the T-DMB multichannel audio encoder and a prototype player. We perform a compatibility test using the T-DMB multichannel audio encoder and conventional T-DMB players. The test demonstrates that the proposed system is compatible with a conventional T-DMB player and that it can provide a promisingly rich audio service.

Implementation of the TMS320C6701 DSP Board for Multichannel Audio Coding (멀티채널 오디오 부호화를 위한 TMS320C6701 DSP 보드 구현)

  • 장대영;홍진우;곽진석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.199-203
    • /
    • 1999
  • This paper is on the DSP system design and implementation for real time MPEG-2 AAC multichannel audio, and MPEG-4 object oriented audio coding. This DSP system employs two DSPs of the state of the art TMS320C6701, developed by TI semiconductor. DSP board has PCI interface for downloading application program and control the system. DSP board was designed to use for both encoder and decoder, by setting several switches. The system contains external input and output box also, for A/D and D/A conversion for eight channel audio. The input box converts multi channel digital audio to ADI format, that provides serial interface for eight channel digital audio. And the output box converts ADI format signal to multi channel audio. Through this ADI interface, DSP boards can be connected to input, output box. Implemented DSP system was tested for integration with MPEG-2 AAC encoder and decoder S/W. Currently the DSP system performs realtime AAC 4-channel audio encoding with two DSPs, and 8-channel decoding with one DSP.

  • PDF

Salience of Envelope Interaural Time Difference of High Frequency as Spatial Feature (공간감 인자로서의 고주파 대역 포락선 양이 시간차의 유효성)

  • Seo, Jeong-Hun;Chon, Sang-Bae;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.381-387
    • /
    • 2010
  • Both timbral features and spatial features are important in the assessment of multichannel audio coding systems. The prediction model, extending the ITU-R Rec. BS. 1387-1 to multichannel audio coding systems, with the use of spatial features such as ITDDist (Interaural Time Difference Distortion), ILDDist (Interaural Level Difference Distortion), and IACCDist (InterAural Cross-correlation Coefficient Distortion) was proposed by Choi et al. In that model, ITDDistswere only computed for low frequency bands (below 1500Hz), and ILDDists were computed only for high frequency bands (over 2500Hz) according to classical duplex theory. However, in the high frequency range, information in temporal envelope is also important in spatial perception, especially in sound localization. A new model to compute the ITD distortions of temporal envelopes in high frequency components is introduced in this paper to investigate the role of such ITD on spatial perception quantitatively. The computed ITD distortions of temporal envelopes in high frequency components were highly correlated with perceived sound quality of multichannel audio sounds.