• Title/Summary/Keyword: Multicast tree

Search Result 263, Processing Time 0.031 seconds

Hop-constrained multicast route packing with bandwidth reservation

  • Gang Jang Ha;Park Seong Su
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.402-408
    • /
    • 2002
  • Multicast technology allows the transmission of data from one source node to a selected group of destination nodes. Multicast routes typically use trees, called multicast routing trees, to minimize resource usage such as cost and bandwidth by sharing links. Moreover, the quality of service (QoS) is satisfied by distributing data along a path haying no more than a given number of arcs between the root node of a session and a terminal node of it in the routing tree. Thus, a multicast routing tree for a session can be represented as a hop constrained Steiner tree. In this paper, we consider the hop-constrained multicast route packing problem with bandwidth reservation. Given a set of multicast sessions, each of which has a hop limit constraint and a required bandwidth, the problem is to determine a set of multicast routing trees in an arc-capacitated network to minimize cost. We propose an integer programming formulation of the problem and an algorithm to solve it. An efficient column generation technique to solve the linear programming relaxation is proposed, and a modified cover inequality is used to strengthen the integer programming formulation.

  • PDF

Preconfigured Multicast Delivery Tree in Mobile IP (Mobile IP에서 기설정된 전달 트리를 이용한 멀티캐스팅 방안)

  • C.B. Chun;C.H. Kang;Lee, J.H.;Kwon, K.H.;Kim, B.S.;Hong, J.P.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10e
    • /
    • pp.76-78
    • /
    • 2002
  • Multicasting over mobile IP network becomes more important with the increasing needs of supporting multimedia services in mobile network. The IETF has suggested two approaches which are remote subscription and bidirectional tunneling for supporting mobility management in multicasting over mobile IP. But these protocols have problems - the frequent reconstruction of multicast delivery tree, packet less during handoff, convergence problem, and so on. In this paper, we propose to use preconfiguration of multicast delivery tree when mobile host enters the foreign network. It will decrease the frequency of multicast delivery tree reconstruction, and reduce the packet loss during handoff, Also the multicast delivery tree maintained by Keep Alive messages makes the signaling overload of networks diminished.

  • PDF

Optimization of Tree-like Core Overlay in Hybrid-structured Application-layer Multicast

  • Weng, Jianguang;Zou, Xuelan;Wang, Minhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3117-3132
    • /
    • 2012
  • The tree topology in multicast systems has high transmission efficiency, low latency, but poor resilience to node failures. In our work, some nodes are selected as backbone nodes to construct a tree-like core overlay. Backbone nodes are reliable enough and have strong upload capacity as well, which is helpful to overcome the shortcomings of tree topology. The core overlay is organized into a spanning tree while the whole overlay is of mesh-like topology. This paper focuses on improving the performance of the application-layer multicast overlay by optimizing the core overlay which is periodically adjusted with the proposed optimization algorithm. Our approach is to construct the overlay tree based on the out-degree weighted reliability where the reliability of a node is weighted by its upload bandwidth (out-degree). There is no illegal solution during the evolution which ensures the evolution efficiency. Simulation results show that the proposed approach greatly enhances the reliability of the tree-like core overlay systems and achieves shorter delay simultaneously. Its reliability performance is better than the reliability-first algorithm and its delay is very close to that of the degree-first algorithm. The complexity of the proposed algorithm is acceptable for application. Therefore the proposed approach is efficient for the topology optimization of a real multicast overlay.

The Design of Multicase Key distribution Protocol based CBT(Core Based Tree) (CBT(Core Based Tree)를 기반으로 한 멀티캐스트 키 분배 프로토콜 설계)

  • Kim, Bong-Han;Lee, Jae-Gwang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1184-1192
    • /
    • 2000
  • Multicast has communication mechanism that is able to transfer voice, video for only the specific user group. As compared to unicast, multicast is more susceptive to attack such as masquerading, malicious replay, denial of service, repudiation and traffic observation, because of the multicast has much more communication links than unicast communication. Multicast-specific security threats can affect not only a group's receivers, but a potentially large proportion of the internet. In this paper, we proposed the multicast security model that is able to secure multi-group communication in CBT(Core Based Tree), which is multicast routing. And designed the multicast key distribution protocol that can offer authentication, user privacy using core (be does as Authentication Server) in the proposed model.

  • PDF

On Minimum Cost Multicast Routing Based on Cost Prediction

  • Kim, Moon-Seong;Mutka, Matt W.;Hwang, Dae-Jun;Choo, Hyun-Seung
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.500-508
    • /
    • 2009
  • We have designed an algorithm for a problem in multicast communication. The problem is to construct a multicast tree while minimizing its cost, which is known to be NP-complete. Our algorithm, which employs new concepts defined as potential cost and spanning cost, generates a multicast tree more efficiently than the well-known heuristic called Takahashi and Matsuyama (TM) [1] in terms of tree cost. The time complexity of our algorithm is O($kn^2$) for an n-node network with k members in the multicast group and is comparable to the TM. Our empirical performance evaluation comparing the proposed algorithm with TM shows that the enhancement is up to 1.25%~4.23% for each best case.

A Method of Selecting Candidate Core for Shared-Based Tree Multicast Routing Protocol (공유기반 트리 멀티캐스트 라우팅 프로토콜을 위한 후보 코어 선택 방법)

  • Hwang Soon-Hwan;Youn Sung-Dae
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.10
    • /
    • pp.1436-1442
    • /
    • 2004
  • A shared-based tree established by the Core Based Tree multicast routing protocol (CBT), the Protocol Independent Multicast Sparse-Mode(PIM-SM), or the Core-Manager based Multicast Routing(CMMR) is rooted at a center node called core or Rendezvous Point(RP). The routes from the core (or RP) to the members of the multicast group are shortest paths. The costs of the trees constructed based on the core and the packet delays are dependent on the location of the core. The location of the core may affect the cost and performance of the shared-based tree. In this paper, we propose three methods for selecting the set of candidate cores. The three proposed methods, namely, k-minimum average cost, k-maximum degree, k-maximum weight are compared with a method which select the candidate cores randomly. Three performance measures, namely, tree cost, mean packet delay, and maximum packet delay are considered. Our simulation results show that the three proposed methods produce lower tree cost, significantly lower mean packet delay and maximum packet delay than the method which selects the candidate cores randomly.

  • PDF

A Novel Shared Segment Protection Algorithm for Multicast Sessions in Mesh WDM Networks

  • Lu, Cai;Luo, Hongbin;Wang, Sheng;Li, Lemin
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.329-336
    • /
    • 2006
  • This paper investigates the problem of protecting multicast sessions in mesh wavelength-division multiplexing (WDM) networks against single link failures, for example, a fiber cut in optical networks. First, we study the two characteristics of multicast sessions in mesh WDM networks with sparse light splitter configuration. Traditionally, a multicast tree does not contain any circles, and the first characteristic is that a multicast tree has better performance if it contains some circles. Note that a multicast tree has several branches. If a path is added between the leave nodes on different branches, the segment between them on the multicast tree is protected. Based the two characteristics, the survivable multicast sessions routing problem is formulated into an Integer Linear Programming (ILP). Then, a heuristic algorithm, named the adaptive shared segment protection (ASSP) algorithm, is proposed for multicast sessions. The ASSP algorithm need not previously identify the segments for a multicast tree. The segments are determined during the algorithm process. Comparisons are made between the ASSP and two other reported schemes, link disjoint trees (LDT) and shared disjoint paths (SDP), in terms of blocking probability and resource cost on CERNET and USNET topologies. Simulations show that the ASSP algorithm has better performance than other existing schemes.

  • PDF

A dynamic multicast routing algorithm in ATM networks (ATM 망에서 동적 멀티캐스트 루팅 알고리즘)

  • 류병한;김경수;임순용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2477-2487
    • /
    • 1997
  • In this paepr, we propose a dynamic multicast routin algorithm for constructing the delay-constrained minimal spanning tree in the VP-based ATM networks, in which we consider the effiiciency enen in the case wheree the destination dynamically joins/departs the multicast connection. For constructing the delay-constrained spanning tree, we frist generate a reduced network consisting of only VCX nodes from a given ATM network, originally consisting of VPX/VCX nodes. Then, we obtain the delay-constrained spanning tree with a minimal tree cost on the reduced network by using our proposed heuristic algorithm. Through numerical examples, we show that our dynamic multicast routing algorithm can provide an efficient usage of network resources when the membership nodes frequently changes during the lifetime of a multicast connection. We also demonstrate the more cost-saving can be expected in dense networks when applyingour proposed algorithm.

  • PDF

The improvement of Tree-First algorithm on End Host Multicast (End Host Multicast : Tree-First 방식의 트리구성 알고리즘 개선 제안)

  • Pom, Choung-Ung;Kang, Mi-Young;Nam, Ji-Seung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.751-752
    • /
    • 2006
  • In this paper, we propose a improved tree construction algorithm on End Host Multicast. By using concurrent connection information of nodes at RP, we could diminish the RDP and the amount of control messages used for tree construction at the same time.

  • PDF

Protection of a Multicast Connection Request in an Elastic Optical Network Using Shared Protection

  • BODJRE, Aka Hugues Felix;ADEPO, Joel;COULIBALY, Adama;BABRI, Michel
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.119-124
    • /
    • 2021
  • Elastic Optical Networks (EONs) allow to solve the high demand for bandwidth due to the increase in the number of internet users and the explosion of multicast applications. To support multicast applications, network operator computes a tree-shaped path, which is a set of optical channels. Generally, the demand for bandwidth on an optical channel is enormous so that, if there is a single fiber failure, it could cause a serious interruption in data transmission and a huge loss of data. To avoid serious interruption in data transmission, the tree-shaped path of a multicast connection may be protected. Several works have been proposed methods to do this. But these works may cause the duplication of some resources after recovery due to a link failure. Therefore, this duplication can lead to inefficient use of network resources. Our work consists to propose a method of protection that eliminates the link that causes duplication so that, the final backup path structure after link failure is a tree. Evaluations and analyses have shown that our method uses less backup resources than methods for protection of a multicast connection.