• Title/Summary/Keyword: Multibody dynamics analysis

Search Result 180, Processing Time 0.033 seconds

Kinematics and Dynamics Analysis of Precision stage (정밀 스테이지의 기구 동역학 해석)

  • Ju, Jae-Hwan;Yim, Hong-Jae;Jang, Si-Youl;Jung, Jae-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.677-682
    • /
    • 2007
  • Recently, a precision stage is widely used in the fields of the nano technology. In this paper, the precision stage which consists of linear motor, vision system, light source system and controller, is designed and developed for nano imprint machine. Stiffness design considering resonance frequency is important for the precision stage. A virtual machine simulation is useful for machine development the early design stage. Kinematic and dynamic simulations of XYZ stage are performed. To consider the resonance frequency and vibration effects flexible multibody dynamics are utilized with FE modeling of the structural components.

  • PDF

Dynamic analysis of electromechanical system (기전 시스템의 동역학 해석)

  • 김진식;박정훈;임홍재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1113-1118
    • /
    • 2004
  • This paper presents the dynamic analysis method for an electromechanical system. The engineer has at his disposal a variety of software simulation tools. However, difficulties arise when the study of the behavior of complex electromechanical systems in combination with coupling element is required. Typical examples of such systems are machines for factory automation, home automation, and office automation. Dynamic systems analysis packages or electronic systems analysis packages offer the restrictive to simulate these mixed systems such electromechanical product. Electronic circuit analysis algorithm is easily incorporated into a multi-body dynamics analysis algorithm. The governing equation of electronic circuit is formulated as a differential algebraic equation form including both electrical and mechanical variables and is simultaneously solved in every time step. This analysis method clearly demonstrates the application potential for mixed electromechanical simulation.

  • PDF

Massless Links with External Forces and Bushing Effect for Multibody Dynamic Analysis

  • Sohn, Jeong-Hyun;Yoo, Wan-Suk;Hong, Keum-Shik;Kim, Kwang-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.810-818
    • /
    • 2002
  • When the contribution of lightweight components to the total energy of a system is small, tole inertia effects are sometimes ignored by replacing them to massless links. For example, a revolute-spherical massless link generates two kinematic constraint equations between adjacent bodies and allows four relative degrees of freedom. In this paper, to implement a massless link systematically in a computer program using the velocity transformation technique, the velocity transformation matrix of massless links is derived and numerically implemented. The velocity transformation matrix for a revolute-spherical massless link and a revolute-universal massless link are appeared as a 6$\times$4 matrix and a 6$\times$3 matrix, respectively. A massless link model in a suspension composite joint transmitting external forces is also developed and the numerical efficiency of the proposed model is compared to a conventional multibody model. For a massless link transmitting external forces, forces acting on links are resolved and transmitted to the attached points with a quasi-static assumption. Numerical examples are presented to verify the formulation.

Development of Aerodynamic Analysis Technology for Wind Turbines using a Multibody Dynamic Analysis Software (다물체 동력학 해석 프로그램을 이용한 풍력발전기 공력해석 기술개발)

  • Rim, Chae Whan;Bang, Je Sung;Cho, Huije;Moon, Seok Jun;Chung, Tae Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.180.2-180.2
    • /
    • 2010
  • Simulation technology for dynamic analysis of wind turbine is developed. The Aerodyn and the DAFUL are chosen for aerodynamic analysis and multi-body and flexible body dynamics respectively. Subroutines and variables of Aerodyn developed by NREL are analyzed with hub-height wind data, full field turbulent wind data and Airfoil data. The interface to perform coupled analysis between AeroDyn and DAFUL, GUI for modeling several parts of wind turbines are developed. The program will be extended to analyze the coupled analysis of aerodynamic and hydrodynamic behavior for floating offshore wind turbines.

  • PDF

Three Dimensional Modeling and Inverse Dynamic Analysis of An Excavator (굴삭기의 3차원 모델링 및 역동역학 해석)

  • 김외조;유완석;이만형;윤경화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2043-2050
    • /
    • 1993
  • This paper presents a three dimensional modeling and dynamic analysis of a hydraulic excavator. An excavator composed of a boom, a bucket, two boom cylinders, an arm cylinder, and a bucket cylinder is used for the analysis. Each cylinder is modeled to two separate bodies linked by a translational joint. Judging from the actual degrees of freedom of the excavator, proper kinematic joints are selected to exclude redundant constraints in the modeling. In order to find the reaction forces at kinematic joints during operations, inverse dynamic analysis is carried out. Dynamic analysis is also carried out to verify the results from inverse dynamic analysis. The DADS program is used for analysis, with proper modification of the DADS user routine according to various motions.

Durability Analysis and Experiments of a Vehicle Component (차량 부품의 내구도 해석과 실험의 비교)

  • Park, Dong-Woon;Park, Su-Jin;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.28-34
    • /
    • 2007
  • In design stage of vehicles, the application of virtual durability analysis techniques enables us to cut down the necessary time and cost to carry out various physical experiments. In this study, computer simulations of vehicle suspensions were carried out with DADS program including component flexibility, and the durability analysis of vehicle components was executed with MSC/Fatigue program using the load history obtained from vehicle dynamic simulation. Driving test of a vehicle was also carried out to obtain precise input data for the durability analysis, and the results of virtual durability analysis were compared to those of experiments.

Validation of Loads Analysis for a Slowed Rotor at High Advance Ratios

  • Park, Jae-Sang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.498-511
    • /
    • 2017
  • This work conducts a validation study for loads analysis of the UH-60A slowed rotor at high advance ratios. The nonlinear flexible multibody dynamics analysis code, DYMORE II, is used with a freewake model for the rotorcraft comprehensive analysis. Wind tunnel test data of airloads and structural loads of a full-scale UH-60A slowed rotor are used for this validation study. This analysis predicts well the thrust reversal phenomenon at the advance ratio of 1.0. The section airloads such as normal forces and pitching moments and the oscillatory blade structural moments in this analysis are compared well or moderately with the measured data, although the higher harmonics components of blade torsion moments are not captured well. This validation study assesses the prediction accuracy and investigates the unique aeromechanics characteristics of a slowed rotor at high advance ratio.

Flexible Multibody Dynamic Analysis of the Deployable Composite Reflector Antenna (전개형 복합재 반사판 안테나의 유연 다물체 동역학 해석)

  • Lim, Yoon-Ji;Oh, Young-Eun;Roh, Jin-Ho;Lee, Soo-Yong;Jung, Hwa-Young;Lee, Jae-Eun;Kang, Deok-Soo;Yun, Ji-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.705-711
    • /
    • 2019
  • Dynamic behaviors of the deployable composite reflector antenna are numerically and experimentally investigated. Equations of the motion are formalized using Kane's equation by considering multibody systems with two degrees of freedom such as folding and twisting angles. To interpret structural deformations of the reflector antenna, the composite reflector is modeled using a beam model with the FSDT(First-order Shear Deformation Theory). To determine design parameters such as a torsional spring stiffness and a damping coefficient depending on deployment duration, an inverted pendulum model is simply applied. Based on the determined parameters, dynamic characteristics of the deployable reflector are investigated. In addition, its results are verified and compared through deployment tests using a gravity compensation device.

Dynamic Responses Optimization of Vacuum Circuit Breaker Using Taghchi Method (실험 계획법을 이용한 진공 차단기의 동특성 최적화)

  • Jo, Jun Yeon;Ahn, Kil Young;Kim, Sung Tae;Yang, Hong Ik;Kim, Kyu Jung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.141-148
    • /
    • 2015
  • In this study, the VCB(Vacuum Circuit Breaker) has been developed using the Recurdyn that is widely used on multibody dynamics analysis. The VCB consists of three main circuits with the VI(Vacuum Interrupter) and the main frame with the operating mechanism. This analytic model is validated by comparing the simulation results and the experimental results. Generally, in order to reliably cut off the breaking current, the opening speed of the VCB after contact separation has to be a 0.9~1.1m/s. Therefore, the study of the design parameters of the VCB is needed. To improve the opening velocity, Taguchi design method is applied to optimize the design parameters of a VCB with a lot of linkages. In addition, to evaluate the improvement of the operating characteristics, the simulation results are compared with the Recurdyn and experimental results with improved prototype sample.

Numerical Analysis of the Initiation and Development of Corrugation on a Gravel Road (수치해석적 기법을 활용한 골재 도로의 콜루게이션 발생 및 진전 분석)

  • Yun, Taeyoung;Chung, Taeil;Shin, Hyu-Soung
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.9-18
    • /
    • 2018
  • PURPOSES : In this research, the initiation and development of corrugation on a gravel road with certain wheel and boundary conditions were evaluated using a coupled discrete-element method (DEM) with multibody dynamics (MBD). METHODS : In this study, 665,534 particles with a 4-mm diameter were generated and compacted to build a circular roadbed track, with a depth and width of 42 mm and 50 mm, respectively. A single wheel with a 100-mm diameter, 40-mm width, and 0.157-kg mass was considered for the track. The single wheel was set to run slowly on the track with a speed of 2.5 rad/s so that the corrugation was gradually initiated and developed without losing contact between the wheel and the roadbed. Then, the shape of the track surface was monitored, and the movement of the particles in the roadbed was tracked at certain wheel-pass numbers to evaluate the overall corrugation initiation and development mechanism. RESULTS : Two types of corrugation, long wave-length and short wave-length, were observed in the circular track. It seems that the long wave-length corrugation was developed by the longitudinal movement of surface particles in the entire track, while the short wave-length corrugation was developed by shear deformation in a local section. Properties such as particle coefficients, track bulk density, and wheel mass, have significant effects on the initiation and development of long-wave corrugation. CONCLUSIONS : It was concluded that the coupled numerical method applied in this research could be effectively used to simulate the corrugation of a gravel road and to understand the mechanism that initiates and develops corrugation. To derive a comprehensive conclusion for the corrugation development under various conditions, the driver's acceleration and deceleration with various particle gradations and wheel-configuration models should be considered in the simulation.