• Title/Summary/Keyword: Multibody dynamic

Search Result 294, Processing Time 0.09 seconds

Dynamic Analysis of a Pantograph-Catenary System for High-Speed Train(I. Modeling and Analysis of a Catenary System) (고속전철 집전시스템의 동역학 해석에 관한 연구(I. 가선계의 모델링 및 해석))

  • Seo Jong-Hwi;Jung Il-Ho;Park Tae-Won;Mok Jin-Yong;Kim Young-Guk;Kim Seok-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.152-159
    • /
    • 2005
  • The dynamic properties between catenary and pantograph of high-speed train are very important factors to affect the stable electric power supply. So as to design the reliable current collection system, a multibody simulation model is needed. In this paper, the dynamic analysis method for a pantograph-catenary cable system of high-speed train is presented. The very deformable motion of a catenary cable is demonstrated using nonlinear continuous beam theory, which is based on an absolute nodal coordinate formulation, and the pantograph is modeled as a rigid multibody. The proposed method might be very efficient, because this method can present the nonlinear properties of a flexible catenary cable and set a various boundary conditions.

Automotive Windshield Wiper Linkage Dynamic Modeling for Vibration Analysis (자동차 와이퍼 링키지의 진동해석을 위한 동역학 모델링)

  • Lee, Byoung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.465-472
    • /
    • 2008
  • An automotive windshield wiper system is modeled mainly for vibration analysis purpose. The model is composed of solid links, ideal joints, imperfect joints to simulate unavoidable manufacturing defects and bushings having stiffness, contact between a wiper blade and a wind screen glass, friction, a spring and an actuator. Main stream of wiper dynamics analysis has been obtaining a closed form of system of equations using Newton's or Lagrange's formula and doing a numerical simulation study to understand and predict the behavior of it. However, the modeling process is complex since a wiper system is of multibody and a contact problem occurs. When imperfection, such as dead zone of a joint and stiffness of a rubber bushing, should be included, the added complexity makes the modeling difficult. Since the imperfection is understood as main cause of problematic vibration, the dynamics model of a wiper system aiming vibration analysis should include such unavoidable manufacturing defects in the model. An open form of dynamic model of a automotive windshield wiper system with imperfect joints using a commercial software is obtained and a simulation analyssis is conducted for vibration reduction study.

Study on Crash Behaviour Analysis of KHST (고속전철 전체차량의 충돌 거동 해석 연구)

  • 한형석;구정서;김대진
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.226-233
    • /
    • 1999
  • The crash behaviour analysis of KHST is studied. KHST is modeled in 3D using the multibody dynamic analysis program DADS. The forward and side crash behaviour is predicted by tile dynamic analysis model and compared with those of another dynamic model. This study shot's that it is possible to predict tile crash behaviour of the trains in three dimension.

  • PDF

Study on Dynamic Analysis of Magnetic Levitation Vehicles (자기부상열차의 동적 해석 연구)

  • 한형석;조흥제;김대진
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.218-225
    • /
    • 1999
  • Dynamic analysis of the magnetic levitation vehicle UTM01 is studied using the multibody dynamic analysis program DADS. The magnetic levitation force is defined and incorporated into DADS through the user-defined subroutines of DADS. The vehicle with bogies is modeled in 3 dimension. The developed vehicle model with magnetic nodules is analyzed for two rail profiles. The results show that the presented method is applicable to magnetic levitation vehicles.

  • PDF

An Efficient Solution for Multibody Dynamics Composed of Flexible Beams (유연한 보로 구성된 다물체 동역학의 효율적인 해법)

  • 이기수;금영탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2298-2305
    • /
    • 1992
  • To obtain the convenient solution of the multibody dynamic systems composed of flexible beams, linear finite element technique is adopted and the nodal coordinates are interpolated in the global inertia frame. Mass matrix becomes an extremely simple constant matrix and the force vector also becomes extremely simple because Coriolis acceleration and centrifugal force are not required. And the elastic force is also simply computed from the moving frame attached to the material. To solve the global differential algebraic euation. an ODE technique is adopted after Lagrange multiplier is computed by the accelerated iterative technique, and the time demanding procedures such as Newton-Raphson iterations and decomposition of the big matrix are not required. The accuracy of the present solution is checked by a well-known example problem.

Performance Analysis of Multiple Wave Energy Converters due to Rotor Spacing

  • Poguluri, Sunny Kumar;Kim, Dongeun;Ko, Haeng Sik;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.229-237
    • /
    • 2021
  • A numerical hydrodynamic performance analysis of the pitch-type multibody wave energy converter (WEC) is carried out based on both linear potential flow theory and computational fluid dynamics (CFD) in the unidirectional wave condition. In the present study, Salter's duck (rotor) is chosen for the analysis. The basic concept of the WEC rotor, which nods when the pressure-induced motions are in phase, is that it converts the kinetic and potential energies of the wave into rotational mechanical energy with the proper power-take-off system. This energy is converted to useful electric energy. The analysis is carried out using three WEC rotors. A multibody analysis using linear potential flow theory is performed using WAMIT (three-dimensional diffraction/radiation potential analysis program), and a CFD analysis is performed by placing three WEC rotors in a numerical wave tank. In particular, the spacing between the three rotors is set to 0.8, 1, and 1.2 times the rotor width, and the hydrodynamic interaction between adjacent rotors is checked. Finally, it is confirmed that the dynamic performance of the rotors slightly changes, but the difference due to the spacing is not noticeable. In addition, the CFD analysis shows a lateral flow phenomenon that cannot be confirmed by linear potential theory, and it is confirmed that the CFD analysis is necessary for the motion analysis of the rotor.

Design and Analysis of a Linear Feeder using Computer Simulation (컴퓨터 시뮬레이션을 이용한 리니어 피더의 설계 및 분석)

  • Lee, Kyu-Ho;Kim, Sung-Hyun;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.749-753
    • /
    • 2007
  • The purpose of this study is to design of a linear feeder using a multi body dynamic program, and to analyze a dynamic motion of the feeder that can transport small mechanical parts uniformly. In order to establish the analysis model of the linear feeder, each parts of the feeder are divided into two types which the rigid and flexible body. For the dynamic simulation, RecurDyn, which is a commercial multi-body dynamic package, is used. We also consider the design parameters for optimal dynamic motion such as centroid, stiffness, and mass of the feeder system. In order to analyze the dynamic motion of a linear feeder, the displacements of the feeder are measured by several accelerometers when it is in an operating condition. After the signal data from the accelerometers are captured in the time domain, the dynamic motion in the space is visualized by using graphic computer software.

  • PDF

Structural Analysis of Floating Offshore Wind Turbine Tower Based on Flexible Multibody Dynamics (탄성 다물체계 동역학을 기반으로 한 부유식 해상 풍력 발전기 타워의 구조 해석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Ku, Namkug;Jo, A-Ra;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1489-1495
    • /
    • 2012
  • In this study, we perform the structural analysis of a floating offshore wind turbine tower by considering the dynamic response of the floating platform. A multibody system consisting of three blades, a hub, a nacelle, the platform, and the tower is used to model the floating wind turbine. The blades and the tower are modeled as flexible bodies using three-dimensional beam elements. The aerodynamic force on the blades is calculated by the Blade Element Momentum (BEM) theory with hub rotation. The hydrostatic, hydrodynamic, and mooring forces are considered for the platform. The structural dynamic responses of the tower are simulated by numerically solving the equations of motion. From the simulation results, the time history of the internal forces at the nodes, such as the bending moment and stress, are obtained. In conclusion, the internal forces are compared with those obtained from static analysis to assess the effects of wave loads on the structural stability of the tower.

Characteristics of Dynamic Track Tension for Three Dimensional High Mobility Tracked Vehicle (3차원 고기동 궤도차량의 동적 궤도장력 특성 연구)

  • 서문석;최진환;류한식;배대성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.112-120
    • /
    • 2003
  • In this paper, dynamic track tension fur high mobility tracked vehicle is investigated by multibody dynamic simulation techniques. This research focuses on a heavy military tracked vehicle which has sophisticated suspension and rubber bushed rack systems. In order to obtain accurate dynamic track tension of track subsystems, each track link is modeled as a body which has six degrees of freedom. A compliant bushing element is used to connect track links. Various virtual proving ground models are developed to observe dynamic changes of the track tension. Numerical studies of the dynamic track tension are validated against the experimental measurements. The effects of pre-tensions, traction forces, fuming resistances, sprocket torques, ground profiles, and vehicle speeds, for dynamic responses of track tensions are explored, respectively.