• Title/Summary/Keyword: Multi-zone

Search Result 539, Processing Time 0.026 seconds

Development of the Two-Zone Model to Estimate the Air Quality in Indoor Environments (실내 공기질 평가를 위한 2구획 모델의 개발)

  • 조석호;양성환;이봉헌;정성욱;이병호
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.745-751
    • /
    • 1998
  • The well-mixed room model has been traditionally used to predict the concentrations of contaminants in indoor environments. However, this is inappropriate because the flow fields in many indoor environments distribute contaminants non-uniformly, due to imperfect air mixing. Thus, some means used to describe an imperfectly mixed room are needed. The simplest model that accounts for imperfect air mixing is a two-zone model. Therefore, this study on development of computer program far the two-zone model is carried out to propose techniques of estimating the concentration of contaminants in the room. To do this, an important consideration is to divide a room into two-zone, i.e. the lower and upper zone assuming that the air and contaminants are well mixed within each zone. And between the zones the air recirculation is characterized through the air exchange parameter. By this basic assumption, the equations for the conservation of mass are derived for each zone. These equations are solved by using the computational technique. The language used to develope the program is a VISUAL BASIC. The value of air exchange coefficient($f_12$) is the most difficult to forecast when the concentrations of contaminants in an imperfectly mixed room are estimated by the two-zone model. But, as the value of $f_12$ increases, the air exchange between each zone increases. When the value of $f_12$ is approximately 15, the concentrations in both zone approach each other, and the entire room may be approximately treated as a single well-mixed room. Therefore, this study is available for designing of the ventilation to improve the air quality of indoor environments. Also, the two-zone model produces the theoretical base which may be extended to the theory for the multi-zone model, that will be contributed to estimate the air pollution in large enclosures, such as shopping malls, atria buildings, atria terminals, and covered sports stadia.

  • PDF

Cross-Coupled Control for Multi-axes Servo System (다축 서보시스템의 상호결합 제어)

  • Kang, Myung-Goo;Lee, Je-Hie;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.186-188
    • /
    • 1995
  • In this paper, Cross-Coupled Controller proposed for multi axes servo system. Tracking error and contouring error exist when a machine tool moves along the trajectory in multi exes system. The proposed scheme enhances the contouring performance by reducing contour error. Feedforward compensator reduces the effects of a nonlinear disturbance such as friction or dead zone. The proposed control scheme reduces the contour error which occured when the tool tracks the reference trajectory. Simulation results show that this scheme improves the contouring performance along the reference trajectory in XY-table.

  • PDF

An Approach to Improve the End-to-end Performance for Mobile Ad hoc Networks (이동 애드 혹 망을 위한 종단간의 성능 개선 방안)

  • 이용석;최웅철
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.3
    • /
    • pp.327-334
    • /
    • 2004
  • In this paper, we make MAC protocol improvements for performance enhancement of multi-hop ad-hoc wireless networks. A node in ad-hoc wireless networks can transmit a packet only when the medium is available, and while a packet is being transmitted, no other nodes are allowed to transmit a packet if they are in carrier sensing range. Carrier sensing range can be divided into two disjoint areas of transmission range and carrier sensing zone(9), and we address the importance of the protocol behavior when a node is in carrier sensing zone. The characteristic of the carrier sensing zone is that a node can not know when the remaining time of the on-going transmission session expires or exactly when the media becomes available. Current MAC protocol does not behave in much different way between when a node is in transmission range and in carrier sensing zone. We have conducted a comprehensive simulation to study the performance improvements. The simulation results indicate that the performance is increased and the number of dropped packets due to collision is significantly reduced as much as a half.

A Study on Unsaturated Zone Characterization and Feasibility of Soil Vapor Extraction at a DNAPL-contaminated Site in Korea

  • Lee, Man Na Mi;Yeo, In Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.6
    • /
    • pp.48-55
    • /
    • 2013
  • This study aimed at characterizing unsaturated zone at the source zone area contaminated by DNAPL and investigating feasibility of soil vapor extraction (SVE). Five boreholes with three multi-level screens at the depth of 3.0~4.5 m, 5.5~7.0 m, and 8.0~12.0 m were installed at the source zone. Pneumatic tests were performed to determine the permeability of porous medium. Permeability was estimated to be 81.6 to 203.7 darcy, depending on the applied solutions, which was contradicted by grain size analysis of cored soil samples leading to 3.51 darcy. This is due to air flow through gravel pack during the early stage of pneumatic test. Pressure-drawdown curve in the late stage also well showed the leaky aquifer type, indicating air leakage to the ground. Air flow tests were also carried out to investigate air flow connectivity between multi-level wells, indicating that the horizontal air flow was well developed between the lower screens of the wells, not between the upper and middle screens due to the leakage to the surface. For the SVE test, there was no noticeable variation in TCE vapor concentration between three different test runs: 1. 8 hours daily for 5 days, 2. 24 hours together with air blowing at another well (BH1), 3. five consecutive days. Even for five-day consecutive test, total amount of removed TCE was estimated only to be as low as 46.5 g.

A multi-phase model for predicting the effective chloride migration coefficient of ITZ in cement-based materials

  • Yang, C.C.;Weng, S.H.
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.239-252
    • /
    • 2013
  • Mortar microstructure is considered as a three-phase composite material, which is cement paste, fine aggregate and interfacial transition zone. Interfacial transition zone is the weakest link between the cement paste and fine aggregate, so it has a significant role to determine the properties of cementitious composites. In this study, specimens (w/c = 0.35, 0.45, 0.55) with various volume fractions of fine aggregate ($V_f$ = 0, 0.1, 0.2, 0.3 and 0.4) were cast and tested. To predict the equivalent migration coefficient ($M_e$) and migration coefficient of interfacial transition zone ($M_{itz}$), double-inclusion method and Mori-Tanaka theory were used to estimate. There are two stages to estimate and calculate the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$). The first stage, the data of experimental chloride ion migration coefficient ($M_s$) was used to calculate the equivalent migration coefficient of fine aggregate with interfacial transition zone ($M_e$) by Mori-Tanaka theory. The second stage, the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$) was calculated by Hori and Nemat-Nasser's double inclusion model. Between the theoretical and experimental data a comparison was conducted to investigate the behavior of interfacial transition zone in mortar and the effect of interfacial transition zone on the chloride migration coefficient, the results indicated that the numerical simulations is derived to the $M_{itz}/M_m$ ratio is 2.11~8.28. Additionally, thickness of interfacial transition zone is predicted from $10{\mu}m$, 60 to $80{\mu}m$, 70 to $100{\mu}m$ and 90 to $130{\mu}m$ for SM30, M35, M45 and M55, respectively.

An Experimental Study on the Combustion Characteristics in Low Emission Multi-Staged Oil Burner (다단연소를 이용한 저 NOx 버너의 연소특성에 관한 연구)

  • An, Guk-Yeong;Kim, Han-Seok;Jo, Eun-Seong
    • 연구논문집
    • /
    • s.27
    • /
    • pp.101-108
    • /
    • 1997
  • The characteristics of combustion and emissions in multi-staged oil burner have been experimentally studied for the various range of equivalence ratios, drop sizes and fuel formulations. Malvern system was used to measure droplet size of fuel. Light fuel oil and light fuel oil doped with pyridine($C_5H _5N$) were used to investigate the effects on fuel NOx emission. The emissions of NO and CO in exhaust gas and the flame temperatures were measured by the gas analyzer and thennocouples. NOx emissions were increased by increasing the excess air ratio (range:$lambda=1.1-1.4$) or decreasing the SMD of droplet in single-staged burner. In comparison with the single-staged burner, the emission of NOx in multi-staged burner was reduced by 50% but CO emission was slightly increased. It is found that multi-staged burner has a good capability in reducing thermal NOx resulting from the distributed heat release rate and lower flame temperature in fuel-rich and fuel-lean combustion zone. Moreover, the fuel NOx emission of the multi-staged burner is lower than that of single-staged burner, because multi-staged burner has fuel rich zone where fuel N is converted to $N_2$ more than NO. In 3-staged burner, the percentage of each stage combustion air have strong influence on emission characteristics. It is also found that NOx emission can be reduced by decreasing inner and outer air percentage or increasing middle air flow rate and CO emission is vice versa.

  • PDF

Analysis of Adhesive Slag Formed on Weld Metal Surface of GTAW Welding after Flux Cored Multi-Pass Welding (FCAW 다층 용접 후 표면 GTAW 용접시 표면 용접부에 생성된 고착 슬래그 분석)

  • Kim, Jung-Min;Kim, Nam-Kyu;Kim, Gi-Dong;Park, Ji-Hong
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.14-19
    • /
    • 2015
  • This study has been performed to investigate the adhesive slag at GTAW weld zone after FCAW multi-pass welding. The cause of adhesive slag formation was examined using optical microscope, field emission scanning electron microscope(FE-SEM) and XRD analysis. The results obtained in this experiment are summarized as follows. Slag of GTAW weld zone surface during welding were formed by mixing the presence of slag in FCAW weld zone. While the slag cools, Cr-spinel phase were formed due to reactions in slag/metal interface. Also, a Cr moves form the weld metal to the slag to strong affinity between oxide atoms and Cr atoms. Hence, detachability of slag was exacerbated by decreasing the interfacial tensions between slag and weld metal.

Prediction of the Viable Operating Range of DME Heel Engine Using Thermal Stratification Based on Numerical Analysis (온도 성층화를 이용한 DME HCCI 엔진의 운전 영역 확장에 관한 수치해석 연구)

  • Jeong, Dong-Won;Kwon, O-Seok;Back, Young-Soon;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.344-351
    • /
    • 2009
  • A multi-zone model was used to predict the operating range of homogeneous charge compression ignition (HCCI) engine, the boundaries of the operating range were determined by knock (presented by ring intensity), misfire (presented by sensitivity of indicated mean effective pressure to the initial temperature). A HCCI engine fueled with Di-Methyl Ether (DME) was simulated under different initial temperature and equivalence ratios, and the operating range was well produced by the model. Furthermore, the model was applied to develop the operating range for thermal stratification in the preceding condition of initial temperature and equivalence ratios. The computations were conducted using Senkin application of the CHEMKINII kinetics rate code.

Analysis on Heat Supply Piping Network for Apartment House (아파트의 온수공급배관망해석)

  • 박윤철;황광일
    • Journal of the Korean housing association
    • /
    • v.13 no.6
    • /
    • pp.89-99
    • /
    • 2002
  • The purpose of this research is to analyze the characteristics of flow rate distribution in hot-water piping networks in the apartment building. A 14-story apartment house was selected as a sample building and analyzed numerically by Hardy-Cross method. Two different piping networks, one has three vertical zones and the other of a single zone with automatic balancing valves, were compared. Some of research results are as follows; As the temperature of supply hot-water increases, the flow rate of it does by buoyancy effect, but this effect is not found in the piping network with automatic balancing valves. Non-uniformity in hot-water flow distributions to all stories in the piping system of single vertical zone can be completely reformed by the installation of either manually operated or automatic balancing valves in every story.

The Bees Algorithm with Weighted Sum Using Memorized Zones for Multi-objective Problem

  • Lee, Ji-Young;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.395-402
    • /
    • 2009
  • This paper presents the newly developed Pareto-based multi-objective Bees Algorithm with weighted sum technique for solving a power system multi-objective nonlinear optimization problem. Specifically, the Pareto-based Bees Algorithm with memorized zone has been developed to alleviate both difficulties from classical techniques and intelligent techniques for multi-objective problems (MOP) and successfully applied to an Environmental/Economic (electric power) dispatch (EED) problem. This multi-objective Bees Algorithm has been examined and applied to the standard IEEE 30-bus six-generator test system. Simulation results have been compared to those obtained using other approaches. The comparison shows the potential and effectiveness of the proposed Bees Algorithm for solving the multi-objective EED problem.