• Title/Summary/Keyword: Multi-watershed

Search Result 150, Processing Time 0.027 seconds

Improved Watershed Image Segmentation Using the Morphological Multi-Scale Gradient

  • Gelegdorj, Jugdergarav;Chu, Hyung-Suk;An, Chong-Koo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.91-95
    • /
    • 2011
  • In this paper, we present an improved multi-scale gradient algorithm. The proposed algorithm works the effectively handling of both step and blurred edges. In the proposed algorithm, the image sharpening operator is sharpening the edges and contours of the objects. This operation gives an opportunity to get noise reduced image and step edged image. After that, multi-scale gradient operator works on noise reduced image in order to get a gradient image. The gradient image is segmented by watershed transform. The approach of region merging is used after watershed transform. The region merging is carried out according to the region area and region homogeneity. The region number of the proposed algorithm is 36% shorter than that of the existing algorithm because the proposed algorithm produces a few irrelevant regions. Moreover, the computational time of the proposed algorithm is relatively fast in comparison with the existing one.

Optimal Designs of Urban Watershed Boundary and Sewer Networks to Reduce Peak Outflows (첨두유출량 저감을 위한 도시유역 경계 및 우수관망 최적 설계)

  • Lee, Jung-Ho;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.157-161
    • /
    • 2011
  • Although many researches have been carried out concerning the watershed division in natural areas, it has not been researched for the urban watershed division. If the boundary between two urban areas is indistinct because no natural distinction or no administrative division is between the areas, the boundary between the urban areas that have the different outlets (multi-outlet urban watershed) is determined by only designer of sewer system. The suggested urban watershed division model (UWDM) determines the watershed boundary to reduce simultaneously the peak outflows at the outlets of each watershed. Then, the UWDM determines the sewer network to reduce the peak outflow at outlet by determining the pipe connecting directions between the manholes that have the multi-possible pipe connecting directions. In the UWDM, because the modification of the sewer network changes the superposition effect of the runoff hydrographs in sewer pipes, the optimal sewer layout can reduce the peak outflow at outlet, as much as the superposition effects of the hydrographs are reduced. Therefore, the UWDM can optimize the watershed distinction in multi-outlet urban watershed by determining the connecting directions of the boundary-manholes using the genetic algorithm. The suggested model was applied to a multi-outlet urban watershed of 50.3ha, Seoul, Korea, and the watershed division of this model, the peak outflows at two outlets were decreased by approximately 15% for the design rainfall.

Development of a Multi-Site Calibration Module of Distributed Model - The Case of GRM - (분포형 모형의 다지점 보정 모듈 개발 - GRM 모형을 중심으로 -)

  • Choi, Yun-Seok;Choi, Cheon-Kyu;Kim, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.103-118
    • /
    • 2012
  • A distributed model can easily obtain discharge at any grids spatially distributed in a watershed. But if there are subwatersheds which have various characteristics in a watershed, it is needed to apply a model calibrated at each subwatershed to obtain reliable simulation results for each subwatershed. In this study, a multi-site calibration module that can calibrate a distributed model at each subwatershed using observed flow data was developed. Methods to select multi-site calibration parameters, to apply subwatershed parameters, and to set subwatershed network information are suggested. Classes to implement multi-site calibration technique are designed and a GUI was developed, and procedures for runoff modelling using subwatershed parameters were established. Multi-site calibration module was applied to Sunsan watershed($977km^2$) of Nakdong river basin. Application results showed that the multi-site calibration technique could be applied effectively to model the calibration for each subwatershed, and the simulation results of subwatershed were improved by the application of multi-site calibration.

Context-free Marker Controlled Watershed Transform for Efficient Multi-object Detection and Segmentation (다중 물체의 효과적 검출과 분할을 위한 문맥자유 마커제어 분수계 변환)

  • Seo, Gyeong-Seok;Jo, Sang-Hyeon;Choe, Heung-Mun;Park, Chang-Jun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.3
    • /
    • pp.237-246
    • /
    • 2001
  • A high speed context-free marker-controlled and minima imposition-free watershed transform is proposed for efficient multi-object detection and segmentation from a complex background. The context-free markers are extracted from a complex backgrounded multi-object image using a noise tolerant attention operator. These make marker-controlled watershed possible for the over-segmentation reduction without region merging. The proposed method presents a marker-constrained labeling that can speed up the segmentation of a marker-controlled watershed transform by eliminating the necessity of the minima imposition. Simulation results show that the proposed method can efficiently detects and segments multiple objects from a complex background while reducing over- segmentation and the computation time.

  • PDF

SWAT model calibration/validation using SWAT-CUP III: multi-site and multi-variable model analysis (SWAT-CUP을 이용한 SWAT 모형 검·보정 III: 다중 관측 지점 및 변수를 고려한 분석)

  • Cho, Younghyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1143-1157
    • /
    • 2020
  • In this study, a criteria for the SWAT model calibration method in SWAT-CUP which considers multi-site and multi-variable observations was presented. For its application, the SWAT model was simulated using long-term observed flow, soil moisture, and evapotranspiration data in Yongdam study watershed, investigating the hydrological runoff characteristics and water balance in the water cycle analysis. The model was calibrated with different parameter values for each sub-watershed in order to reflect the characteristics of multiple observations through one-by-one calibration, appropriate settings of model simulation run/iteration number (1,000 simulation runs in the first iteration and then 500 simulation runs for the following iterations), and executions of partial and all run in SWAT-CUP. The flow simulation results of watershed outlet point, ENS 0.85, R2 0.87, and PBIAS -7.6%, were compared with the analysis results (ENS 0.52, R2 0.54, and PBIAS -22.4%) applied in the other batch (i.e., non one-by-one) calibration approach and showed better performances of proposed method. From the simulation results of a total of 15 years, it was found that the total runoff (streamflow) and evapotranspiration rates from precipitation are 53 and 39%, and the ratio of surface runoff and baseflow (i.e., sum of lateral and return flow, and recharge deep aquifer) are 35 and 65%, respectively, in Yongdam watershed. In addition, the analytical amount of available water (i.e., water yield), including the total annual streamflow (daily average 21.8 m3/sec) is 6.96 billion m3 per year (about 540 to 900 mm for sub-watersheds).

Optimization of Detention Facilities by Using Multi-Objective Genetic Algorithms (다목적 유전자 알고리즘을 이용한 우수유출 저류지 최적화 방안)

  • Chung, Jae-Hak;Han, Kun-Yeun;Kim, Keuk-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1211-1218
    • /
    • 2008
  • This study is for design of the detention system distributed in a watershed by the Multi-Objective Genetic Algorithms(MOGAs). A new model is developed to determine optimal size and location of detention. The developed model has two primary interfaced components such as a rainfall runoff model to simulate water surface elevation(or flowrate) and MOGAs to get the optimal solution. The objective functions used in this model depend on the peak flow and storage of detention. With various constraints such as structural limitations, capacities of storage and operational targets. The developed model is applied at Gwanyang basin within Anyang watershed. The simulation results show the maximum outlet reduction is occurred at detention facilities located in upper reach of watershed in the peak discharge rates. It is also reviewed the simultaneous construction of an off-line detention and an on-line detention. The methodologies obtained from this study will be used to control the flood discharges and to reduce flood damage in urbanized watershed.

Study on Representation of Pollutants Delivery Process using Watershed Model (수질오염총량관리를 위한 유역모형의 유달 과정 재현방안 연구)

  • Hwang, Ha Sun;Rhee, Han Pil;Lee, Sung Jun;Ahn, Ki Hong;Park, Ji Hyung;Kim, Yong Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.589-599
    • /
    • 2016
  • Implemented since 2004, TPLC (Total Pollution Load Control) is the most powerful water-quality protection program. Recently, uncertainty of prediction using steady state model increased due to changing water environments, and necessity of a dynamic state model, especially the watershed model, gained importance. For application of watershed model on TPLC, it needs to be feasible to adjust the relationship (mass-balance) between discharged loads estimated by technical guidance, and arrived loads based on observed data at the watershed outlet. However, at HSPF, simulation is performed as a semi-distributed model (lumped model) in a sub-basin. Therefore, if the estimated discharged loads from individual pollution source is directly entered as the point source data into the RCHRES module (without delivery ratio), the pollutant load is not reduced properly until it reaches the outlet of the sub-basin. The hypothetic RCHRES generated using the HSPF BMP Reach Toolkit was applied to solve this problem (although this is not the original application of Reach Toolkit). It was observed that the impact of discharged load according to spatial distribution of pollution sources in a sub-basin, could be expressed by multi-segmentation of the hypothetical RCHRES. Thus, the discharged pollutant load could be adjusted easily by modification of the infiltration rate or characteristics of flow control devices.

Application of Remotely Sensed Data and Geographic Information System in Watershed Management Planning in Imha, Korea

  • CHAE Hyo-Sok;LEE Geun-Sang;KIM Tae-Joon;KOH Deuk-Koo
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.361-364
    • /
    • 2005
  • The use of remotely sensed data and geographic information system (GIS) to develop conservation-oriented watershed management strategies on Imha Dam, Korea, is presented. The change of land use for study area was analyzed using multi-temporal Landsat imagery. A soil loss model was executed within a GIS environment to evaluate watershed management strategies in terms of soil loss. In general, remotely sensed data provide efficient means of generating the input data required for the soil loss model. Also, GIS allowed for easy assessment of the relative erosion hazard over the watershed under the different land use change options. The soil loss model predicted substantial declines in soil loss under conservation-oriented land management compared to current land management for Imha Dam. The results of this study indicate that soil loss potential (5,782,829 ton/yr) on Imha Dam in 2003 is approximately 1.27 times higher than that (4,557,151 ton/yr) in 1989. This study represents the first attempt in the application of GIS technology to watershed conservation planning for Imha Dam. The procedures developed will contribute to the evolution of a decision support system to guide the land planning and dam management in Imha Dam.

  • PDF

Analysis of Land Use Pattern Change of Sub-Watershed -Focused on Moyar, India- (유역하류지역의 토지이용변화 분석 -인도 Moyar유역을 중심으로-)

  • Malini, Ponnusamy;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.87-92
    • /
    • 2010
  • Large pressure on the growing population has increased rapid change in the LULC (land use/land cover) patterns in the watershed area. Spatial distribution of LULC information and its changes are desirable for any effective planning, managing and monitoring activities. The aim of the study is to produce the 1,50,000 scaled LULC change map for the sub-watershed, Western Moyar, India using the multi-temporal satellite image dataset of IRS LISS III images for the year 1989, 1999, and 2002. About 9 classes are extracted using onscreen visual interpretation techniques for all the three years. The change detection analysis was performed using matrix method for period I (1989-1999) and period II (1999-2002). The study reveals that the changes noticed in period II (1999-2002) is comparatively more than period I (1989-1999), which is dynamic information to protect the sub-watershed area from the deterioration and paves the way to for the sustainable development.

Estimating Soil Losses from Saemangeum Watershed based on Cropping Systems (작부체계를 고려한 새만금유역의 토양유실량 추정)

  • Lee, Eun-Jeong;Cho, Young-Kyoung;Park, Seung-Woo;Kim, Hak-Kwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.101-112
    • /
    • 2006
  • A Geographic Information System (GIS) was developed to estimate basin-wide soil losses using the Universal Soil Loss Equation (USLE). It was applied to estimate the annual average soil losses from the Saemangeum watershed. The USLE factors for each subarea of uniform land use and treatments were estimated from the GIS routines from digital topographic maps, land cover and detailed soil maps. A routine was developed to estimate the averaged cropping management factors (C) of USLE for multi-cropping farmlands, based on cropping system records from the district offices. The resulting C factors ranged from 0.28 to 0.35 for multi-cropping areas. The estimated annual average soil loss was approximately 2.9 million tonnes. Typical soil losses from different land uses were 0.8 t/ha at paddies, 33.7 t/ha at uplands and 1.1 t/ha from forested mountains. It was also found that 6.0% of the arable land of the watershed possessed high risks of soil losses, and conservation measures were needed to reduce soil losses.