• Title/Summary/Keyword: Multi-user MIMO-OFDM

Search Result 17, Processing Time 0.019 seconds

Performance analysis of MIMO-OFDM systems with adaptive beamformer (다중 사용자 환경에서 적응 빔 형성기를 가진 MIMO-OFDM 시스템의 성능 분석)

  • Kim, Chan-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.9
    • /
    • pp.1-8
    • /
    • 2007
  • In this paper, the new beamforming is proposed for an orthogonal frequency division multiplexing(OFDM) system with multi-input multi-output(MIMO). Through the proposed Pre-FFT beamforming technique for MIMO-OFDM, the multibeams are formed toward each multi-transmitter antenna of the desired user. The proposed beamforming for MIMO-OFDM can reduce cochannel interference and get diversity gain in the multi-user environment. Therefore, the performance of MIMO-OFDM system is very improved. BER performance improvement of the proposed approach is investigated through computer simulation by applying it to MIMO-OFDM system in the multi-user environment.

English Performance of MIMO-OFDM Combing Bemaformer with Space-time Decoder in Multiuser Environments (다중 사용자 환경에서 빔 형성기와 결합된 Space-Time decoder을 가진 MIMO-OFDM 시스템의 성능)

  • Kim Chan-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.775-783
    • /
    • 2006
  • In this paper, the new technique combining beamforming with space-time coding is proposed for an orthogonal frequency division multiplexing(OFDM) system with multi-input multi-output(MIMO). When MIMO-OFDM system is employing Nt(the number of transmitterantenna) beamfomers and one S-T decoder at Nr receiver antennas, Nt signals removed CCI are outputted at the beamformer and then diversity gain can be got through space-time decoding. As the proposed technique can reduce cochannel interference and get diversity gain in the multi-user environment, the performance of MIMO-OFDM system is very improved. BER performance improvement and convergence behavior of the proposed approach are investigated through computer simulation by applying it to MIMO-OFDM system in the multi-user environment.

Performance of Multi-User MIMO/OFDM System using Cyclic Delay Diversity for Fading Channels (페이딩 채널에서 순환 지연 다이버시티를 적용한 다중 사용자 MIMO OFDM 시스템의 성능)

  • Park, In-Hwan;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.263-268
    • /
    • 2010
  • As the demand of high quality service in next generation wireless communication systems, a high performance of data transmission requires an increase of spectrum efficiency and an improvement of error performance in wireless communication systems. In this paper, we propose a multi-user multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with cyclic delay diversity and block diagonalization procoding method to improve bit error rate (BER) performance with wireless local area network (WLAN) channel model C and D for 802.11n WLAN system. The results of mathlab simulation show the improvement of BER performance in 802.11n wireless indoor channel environment.

Efficient resource allocation for the multi-user MIMO-OFDM system with MMSE-SIC receiver (MMSE-SIC 기반 다중 사용자 MIMO-OFDM 시스템에서의 효율적 자원 할당 기법)

  • Lee, Panhyung;Lee, Jae Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.86-87
    • /
    • 2011
  • 본 논문에서는 상향링크 다중 사용자 MIMO-OFDM 시스템을 위한 새로운 자원 할당 기법을(resource allocation) 제안한다. 제안된 자원 할당 기법에서는 각 사용자별 전송전력 제한을 만족하면서 주파수 효율이(spectral efficiency) 최대화 되도록 사용자들에게 부반송파와(subcarrier) 전력을(power) 할당한다. 모의 실험 결과에서는 제안된 기법이 기존 기법에 비해 주파수 효율이 증가됨을 보이고 있다.

  • PDF

Performance of MIMO MC-CDMA systems combining multi-beamforming algorithm with space-time coding (적응 다중 빔형성 기법과 시공간 부호가 결합된 MIMO MC-CDMA시스템의 성능)

  • Kim, Chan Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.53-60
    • /
    • 2013
  • In this paper, the new multi-beamforming is proposed for Multiple-input multiple-output (MIMO) Multicarrier-Code division multiple access(MC-CDMA) systems to overcome the decrease of performance due to multiuser interference and multiple-antenna interference. Installing the number of multi-beamformer which is equal to the number of multi-transmitter antennas and exploiting the proposed approach at the receiver of MIMO MC-CDMA, the multi-beams are formed toward each multi-antenna of desired user and null beam are formed to other interference. Therefore, the performance of MIMO MC-CDMA system is improved as removing the interference signal. BER performance improvement is investigated through computer simulation by the proposed approach to MIMO MC-CDMA system.

Resource Allocation in Multi-User MIMO-OFDM Systems with Double-objective Optimization

  • Chen, Yuqing;Li, Xiaoyan;Sun, Xixia;Su, Pan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2063-2081
    • /
    • 2018
  • A resource allocation algorithm is proposed in this paper to simultaneously minimize the total system power consumption and maximize the system throughput for the downlink of multi-user multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems. With the Lagrange dual decomposition method, we transform the original problem to its convex dual problem and prove that the duality gap between the two problems is zero, which means the optimal solution of the original problem can be obtained by solving its dual problem. Then, we use convex optimization method to solve the dual problem and utilize bisection method to obtain the optimal dual variable. The numerical results show that the proposed algorithm is superior to traditional single-objective optimization method in both the system throughput and the system energy consumption.

Efficient System Level Simulation Method for MIMO-OFDM System (MIMO-OFDM 시스템을 위한 효율적인 시스템 레벨 시뮬레이션 기법)

  • Kim, Min-Hoon;Ko, Young-Chai;Jeon, Tae-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.77-85
    • /
    • 2009
  • This paper proposes an efficient system level simulation method for MIMO-OFDM based system in the multi-cell environment. The proposed method analyzes effects of the cell structure, radio channel characteristics and user mobility. The user mobility effect on the system level performance is considered in both channel gain and distance. The receiver SINR calculation procedure is presented in the system which adopts MIMO-OFDM scheme under various system environments. This method can be flexibly extensible to various system environments and provides computationally efficient system level simulation technique which utilizes link level performance analysis. Extensive computer simulations results are presented to obtain the system performance in the various mobile cellular channels using the proposed method. Also this results are analyzed based on the packet error rate for different distances between the base station located in the center of the cell and the mobile user.

Resource allocation for the multi-user MIMO-OFDM system (다중 사용자 MIMO-OFDM 시스템을 위한 자원 할당 기법)

  • Lee, Pan-Hyung;Lee, Jae-Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.98-100
    • /
    • 2010
  • 본 논문에서는 주파수 선택적 페이딩(frequency selective fading) 채널에서 다중 사용자 MIMO-OFDM 시스템을 위한 자원 할당(resource allocation)을 연구한다. 다중 사용자의 신호를 검출하기 위해 기지국은 MMSE-SIC 수신기를 사용하고 이러한 조건에서 다중 사용자 MIMO-OFDM 시스템을 위한 최적화 문제를 도출하며 이를 위한 자원 할당 기법을 제안한다. 평균 채널 이득이 사용자마다 다른 환경에서의 컴퓨터 모의실험을 통해 제안된 자원 할당 기법의 성능을 알아본다. 모의 실험 결과 제안된 자원 할당 기법은 기존의 자원 할당 기법보다 더 높은 데이터 전송률(data rate)을 달성함을 보이고 있다.

  • PDF

Performance Improvement of MIMO-OFDMA system with beamformer

  • Kim, Chan Kyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.60-68
    • /
    • 2019
  • In this paper, we propose the adaptive beamforming algorithm for the MIMO (Multi-Input Multi-Out)-OFDMA(Orthogonal Frequency Division Multiplexing Access)system to improve the performance. The performance of MIMO-OFDMA systems is greatly decreased in the wireless channel environment with multiusers, because the received signals are much distorted by a cochannel interference (CCI) during the space-time decoding. The proposed approach can track the DOA of each signal from the multiple antennas of the desired user without being greatly dependent on the impinging angle. And beams are directed toward the multiple transmitters of the desired user while null beams are directed toward interference directions. Therefore, we can can effectively cancel CCI and mitigate the impairment of delay spread while preserving the STC(space time code) diversity. BER performance improvement is investigated through computer simulation by applying the proposed approach to MIMO-OFDMA system in a multipath fading channel with CCI.

Multi-antenna Subcarrier Allocation Using Zero-Forcing Beamforming in MIMO-OFDM Systems (다중입출력 직교 주파수 분할 다중접속 시스템에서 제로포싱 빔형성을 이용한 다중안테나 부반송파 할당 방법)

  • Shin, Young-Il;Kang, Tae-Sung;Kim, Hyung-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.974-983
    • /
    • 2007
  • In this paper, a low complexity subcarrier allocation scheme is proposed for multiuser MIMO-OFDM systems with zero-forcing beamformer (ZFBF) so that the total transmit power can be minimized satisfying given target data rate. Since the optimal method requires very high computational complexity, we propose a low complextiy suboptimal method. Using the fact that the effective channel gain is proportional to the orthogonallity of channels of multiplexed users, a user set with the highest orthogonality of channel among users is assigned to each subcarrier in order to minimize required transmit power. The numerical results show that the proposed suboptimal method can reduce computational complexity with little performance loss.