• Title/Summary/Keyword: Multi-temporal satellite imagery

Search Result 58, Processing Time 0.029 seconds

Urban Spatial Analysis using Multi-temporal KOMPSAT-1 EOC Imagery

  • Kim Youn-Soo;Jeun Gab-Ho;Lee Kwang-Jae;Kim Byung-Kyo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.515-517
    • /
    • 2004
  • Although sustainable development of a city should in theory be based on updated spatial information like land cover/use changes, in practice there are no effective tools to get such information. However the development of satellite and sensor technologies has increased the supply of high resolution satellite data, allowing cost-effective, multi-temporal monitoring. Especially KOMPSAT-1(KOrea Multi-Purpose SATellite) acquired a large number of images of the whole Korean peninsula and covering some large cities a number of times. In this study land-use patterns and trends of Daejeon from the year 2000 to the year 2003 will be considered using land use maps which are generated by manual interpretation of multi-temporal KOMPSAT EOC imagery and to show the possibility of using high resolution satellite remote sensing data for urban analysis.

  • PDF

Field Crop Classification Using Multi-Temporal High-Resolution Satellite Imagery: A Case Study on Garlic/Onion Field (고해상도 다중시기 위성영상을 이용한 밭작물 분류: 마늘/양파 재배지 사례연구)

  • Yoo, Hee Young;Lee, Kyung-Do;Na, Sang-Il;Park, Chan-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.621-630
    • /
    • 2017
  • In this paper, a study on classification targeting a main production area of garlic and onion was carried out in order to figure out the applicability of multi-temporal high-resolution satellite imagery for field crop classification. After collecting satellite imagery in accordance with the growth cycle of garlic and onion, classifications using each sing date imagery and various combinations of multi-temporal dataset were conducted. In the case of single date imagery, high classification accuracy was obtained in December when the planting was completed and March when garlic and onion started to grow vigorously. Meanwhile, higher classification accuracy was obtained when using multi-temporal dataset rather than single date imagery. However, more images did not guarantee higher classification accuracy. Rather, the imagery at the planting season or right after planting reduced classification accuracy. The highest classification accuracy was obtained when using the combination of March, April and May data corresponding the growth season of garlic and onion. Therefore, it is recommended to secure imagery at main growth season in order to classify garlic and onion field using multi-temporal satellite imagery.

An Implementation of Change Detection System for High-resolution Satellite Imagery using a Floating Window

  • Lim, Young-Jae;Jeong, Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.275-279
    • /
    • 2002
  • Change Detection is a useful technology that can be applied to various fields, taking temporal change information with the comparison and analysis among multi-temporal satellite images. Especially, Change Detection that utilizes high-resolution satellite imagery can be implemented to extract useful change information for many purposes, such as the environmental inspection, the circumstantial analysis of disaster damage, the inspection of illegal building, and the military use, which cannot be achieved by low- or middle-resolution satellite imagery. However, because of the special characteristics that result from high-resolution satellite imagery, it cannot use a pixel-based method that is used for low-resolution satellite imagery. Therefore, it must be used a feature-based algorithm based on the geographical and morphological feature. This paper presents the system that builds the change map by digitizing the boundary of the changed object. In this system, we can make the change map using manual or semi-automatic digitizing through the user interface implemented with a floating window that enables to detect the sign of the change, such as the construction or dismantlement, more efficiently.

  • PDF

The multi-temporal characteristics of spectral vegetation indices for agricultural land use on RapidEye satellite imagery (농촌지역 토지이용유형별 RapidEye 위성영상의 분광식생지수 시계열 특성)

  • Kim, Hyun-Ok;Yeom, Jong-Min;Kim, Youn-Soo
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.149-155
    • /
    • 2011
  • A fast-changing agriculture environment induced by global warming and abnormal climate conditions demands scientific systems for monitoring and predicting crop conditions as well as crop yields at national level. Remote sensing opens up a new application field for precision agriculture with the help of commercial use of high resolution optical as well as radar satellite data. In this study, we investigated the multi-temporal spectral characteristics relative to different agricultural land use types in Korea using RapidEye satellite imagery. There were explicit differences between vegetation and non-vegetation land use types. Also, within the vegetation group spectral vegetation indices represented differences in temporal changing trends as to plant species and paddy types.

Change Detection of Land-cover from Multi-temporal KOMPSAT-1 EOC Imageries

  • Ha, Sung-Ryong;Ahn, Byung-Woon;Park, Sang-Young
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • A radiometric correction method is developed to apply multi-temporal KOMPSAT-1 EOC satellite images for the detection of land-cover changes b\ulcorner recognizing changes in reflection pattern. Radiometric correction was carried out to eliminate the atmospheric effects that could interfere with the image properly of the satellite data acquired at different multi-times. Four invariant features of water, sand, paved road, and roofs of building are selected and a linear regression relationship among the control set images is used as a correction scheme. It is found that the utilization of panchromatic multi-temporal imagery requires the radiometric scene standardization process to correct radiometric errors that include atmospheric effects and digital image processing errors. Land-cover with specific change pattern such as paddy field is extracted by seasonal change recognition process.

L-band SAR Monitoring of Rice Crop Growth

  • Lee, Kyu-Sung;Hong, Chang-Hee
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.479-484
    • /
    • 1999
  • Rice crop has relatively short growing season during the summer in Korea and, therefore, it is often difficult to acquire cloud-free imagery on time. This study was attempt to define the temporal characteristics of radar backscattering observed from satellite L-band SAR data on different growing stages of rice crop. Six scenes of multi-temporal JERS SAR data were obtained from the transplanting season to the harvesting month of October. Six layers of multi-temporal SAR data were registered on a common geographic coordinate system. Using topographic maps, field collected data, and Landsat TM data, several sample rice fields were delineated from the imagery and their relative radar backscatters were calculated by using a set of reference targets. The temporal pattern of radar backscattering was very distinctive by the growing stage of rice crop. It was also separable between two types of rice fields having different cultivation practices. Considering the temporal characteristics of radar backscattering observed from the study, it is obvious that a certain date of the growing season can be more effective to delineate the exact area of the cultivated rice crop field.

  • PDF

A Study on the Urban Growth Change using Satellite Imagery Data (위성영상자료를 활용한 도시성장변화에 관한 연구)

  • Kim, Yoon-Soo;Kim, Jung-Hwan;Jung, Eung-Ho;Ryu, Ji-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.81-90
    • /
    • 2002
  • Remote Sensing has been very useful tool in monitoring of cities and updating of GIS database compare to traditional methods due to its benefit; wide range covering on low cost and advanced data collection. However it had come to a limited method in limited researches because of its relatively poor spatial resolution in scanning. Recently launched satellites are able to produce improved imageries, and new commercial services have been commenced for the use of general public with higher spatial resolution up to $1m{\times}1m$. This study tackled a potential use of these improved satellite imageries in urban planning based on the Multi-temporal satellite imagery with particular reference to monitoring on urban areas, for example urbanization and its expanding. i) Portion of individual features and elements in each pixel of satellite imagery was computed based on 'Endmember' of targeted elements. ii) Urbanized areas were categorized based on the 'Fraction imagery' derived from the 'SMA algorithm'. iii) Alterations and expanding of urban areas were identified based on the Multi-temporal satellite imageries. Tested method showed a strong potential to produce more advanced monitoring skills of urban areas.

  • PDF

The Change Detection from High-resolution Satellite Imagery Using Floating Window Method (이동창 방식에 의한 고해상도 위성영상에서의 변화탐지)

  • Im, Yeong-Jae;Ye, Cheol-Su;Kim, Gyeong-Ok
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.117-122
    • /
    • 2002
  • Change detection is a useful technology that can be applied to various fields, taking temporal change information with the comparison and analysis among multi-temporal satellite images. Especially, change detection that utilizes high-resolution satellite imagery can be implemented to extract useful change information for many purposes, such as the environmental inspection, the circumstantial analysis of disaster damage, the inspection of illegal building, and the military use, which cannot be achieved by lower middle-resolution satellite imagery. However, because of the special characteristics that result from high-resolution satellite imagery, it cannot use a pixel-based method that is used for low-resolution satellite imagery. Therefore, it must be used a feature-based algorithm based on the geographical and morphological feature. This paper presents the system that builds the change map by digitizing the boundary of the changed object. In this system, we can make the change map using manual or semi-automatic digitizing through the user interface implemented with a floating window that enables to detect the sign of the change, such as the construction or dismantlement, more efficiently.

  • PDF

Downscaling of MODIS Land Surface Temperature to LANDSAT Scale Using Multi-layer Perceptron

  • Choe, Yu-Jeong;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.313-318
    • /
    • 2017
  • Land surface temperature is essential for monitoring abnormal climate phenomena such as UHI (Urban Heat Islands), and for modeling weather patterns. However, the quality of surface temperature obtained from the optical space imagery is affected by many factors such as, revisit period of the satellite, instance of capture, spatial resolution, and cloud coverage. Landsat 8 imagery, often used to obtain surface temperatures, has a high resolution of 30 meters (100 meters rearranged to 30 meters) and a revisit frequency of 16 days. On the contrary, MODIS imagery can be acquired daily with a spatial resolution of about 1 kilometer. Many past attempts have been made using both Landsat and MODIS imagery to complement each other to produce an imagery of improved temporal and spatial resolution. This paper applied machine learning methods and performed downscaling which can obtain daily based land surface temperature imagery of 30 meters.

Extracting Urban Boundary Using Grey Level Co-Occurrence Matrix Method and Visual Interpretation (GLCM과 육안판독을 이용한 도시경계 추출)

  • 손홍규;김기홍;유복모;방수남
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.313-316
    • /
    • 2003
  • Growing urban areas modify patterns of local land use and land cover. Land use changes associated with an urban area can be extensive. One way to understand and document land use change and urbanization is to establish benchmark maps compiled from satellite imagery The use of satellite imagery for monitoring urban growth has been widely demonstrated. Multi-temporal LANSAT TM image data has created the potential for monitoring urban change and land cover identification. In this study, for extracting urban boundary GLCM method and visual interpretation were used in CORONA imagery and SPOT imagery.

  • PDF