• Title/Summary/Keyword: Multi-temporal Satellite Images

Search Result 107, Processing Time 0.034 seconds

Assessment of the Ochang Plain NDVI using Improved Resolution Method from MODIS Images (MODIS영상의 고해상도화 수법을 이용한 오창평야 NDVI의 평가)

  • Park, Jong-Hwa;La, Sang-Il
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.1-12
    • /
    • 2006
  • Remote sensing cannot provide a direct measurement of vegetation index (VI) but it can provide a reasonably good estimate of vegetation index, defined as the ratio of satellite bands. The monitoring of vegetation in nearby urban regions is made difficult by the low spatial resolution and temporal resolution image captures. In this study, enhancing spatial resolution method is adapted as to improve a low spatial resolution. Recent studies have successfully estimated normalized difference vegetation index (NDVI) using improved resolution method such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS Terra satellite. Image enhancing spatial resolution is an important tool in remote sensing, as many Earth observation satellites provide both high-resolution and low-resolution multi-spectral images. Examples of enhancement of a MODIS multi-spectral image and a MODIS NDVI image of Cheongju using a Landsat TM high-resolution multi-spectral image are presented. The results are compared with that of the IHS technique is presented for enhancing spatial resolution of multi-spectral bands using a higher resolution data set. To provide a continuous monitoring capability for NDVI, in situ measurements of NDVI from paddy field was carried out in 2004 for comparison with remotely sensed MODIS data. We compare and discuss NDVI estimates from MODIS sensors and in-situ spectroradiometer data over Ochang plain region. These results indicate that the MODIS NDVI is underestimated by approximately 50%.

Matching and Geometric Correction of Multi-Resolution Satellite SAR Images Using SURF Technique (SURF 기법을 활용한 위성 SAR 다중해상도 영상의 정합 및 기하보정)

  • Kim, Ah-Leum;Song, Jung-Hwan;Kang, Seo-Li;Lee, Woo-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.431-444
    • /
    • 2014
  • As applications of spaceborne SAR imagery are extended, there are increased demands for accurate registrations for better understanding and fusion of radar images. It becomes common to adopt multi-resolution SAR images to apply for wide area reconnaissance. Geometric correction of the SAR images can be performed by using satellite orbit and attitude information. However, the inherent errors of the SAR sensor's attitude and ground geographical data tend to cause geometric errors in the produced SAR image. These errors should be corrected when the SAR images are applied for multi-temporal analysis, change detection applications and image fusion with other sensor images. The undesirable ground registration errors can be corrected with respect to the true ground control points in order to produce complete SAR products. Speeded Up Robust Feature (SURF) technique is an efficient algorithm to extract ground control points from images but is considered to be inappropriate to apply to SAR images due to high speckle noises. In this paper, an attempt is made to apply SURF algorithm to SAR images for image registration and fusion. Matched points are extracted with respect to the varying parameters of Hessian and SURF matching thresholds, and the performance is analyzed by measuring the imaging matching accuracies. A number of performance measures concerning image registration are suggested to validate the use of SURF for spaceborne SAR images. Various simulations methodologies are suggested the validate the use of SURF for the geometric correction and image registrations and it is shown that a good choice of input parameters to the SURF algorithm should be made to apply for the spaceborne SAR images of moderate resolutions.

Analysis of Solar Surface Data Obtained by Domless Solar Telescope of Hida observatory

  • Kim, Hyun-Nam;Kitai, Reizaburou;Ichimoto, Kiyoshi;Kim, Kap-Sung;Choe, Gwang-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.28.1-28.1
    • /
    • 2010
  • Ground-based solar observations have several merits such as wider field of view and higher time cadence than those of satellite observations. The Domeless Solar Telescope of Hida Observatory is designed to acquire solar surface images at the highest possible spatial resolution using two types of spectrographs: a vertical spectrograph with the highest wavelength resolution in the world, and a horizontal spectrograph that can take images of the sun in multi-wavelength over the entire visible solar spectrum. The temporal variation of fine features such as chromospheric grains in the supergranulation cells and facular points in the network region has been obtained using DST Ca II K lines compared with Hinode Ca II H lines. This analysis is expected to provide a fundamental tool for research of diverse phenomena on the solar surface.

  • PDF

Hydrosphere Change Monitoring of the Daecheong-Dam Basin using Multi-temporal Landsat Images (시계열 Landsat영상을 이용한 대청댐 유역의 수계변화 모니터링)

  • Um, dae-yong;Park, joon-kyu;Lee, jin-duk
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.932-936
    • /
    • 2007
  • In this study, it analyzed the hydrosphere change up to recently since the construction of Daecheong dam using Landsat satellite images and qualitatively the hydrosphere change of the Daecheong dam basin. These study detected the hydrosphere change with applying supervised classification about Landsat satellite image corresponding to 4 periods of 1981, 1987, 1993, and 2002. For this, it designated the class of hydrosphere, vegetation, etc and achieved overlay analysis with extracting only the hydrosphere, and though this, These study monitored the change about hydrosphere of Daecheong dam basin efficiently.

  • PDF

Changes of the Forest Types by Climate Changes using Satellite imagery and Forest Statistical Data: A case in the Chungnam Coastal Ares, Korea (위성영상과 임상통계를 이용한 충남해안지역의 기후변화에 따른 임상 변화)

  • Kim, Chansoo;Park, Ji-Hoon;Jang, Dong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.523-538
    • /
    • 2011
  • This study analyzes the changes in the surface area of each forest cover, based on temperature data analysis and satellite imagery as the basic methods for the impact assessment of climate change on regional units. Furthermore, future changes in the forest cover are predicted using the double exponential smoothing method. The results of the study have shown an overall increase in annual mean temperature in the studied region since 1990, and an especially increased rate in winter and autumn compared to other seasons. The multi-temporal analysis of the changes in the forest cover using satellite images showed a large decrease of coniferous forests, and a continual increase in deciduous forests and mixed forests. Such changes are attributed to the increase in annual mean temperature of the studied regions. The analysis of changes in the surface area of each forest cover using the statistical data displayed similar tendencies as that of the forest cover categorizing results from the satellite images. Accordingly, rapid changes in forest cover following the increase of temperature in the studied regions could be expected. The results of the study of the forest cover surface using the double exponential smoothing method predict a continual decrease in coniferous forests until 2050. On the contrary, deciduous forests and mixed forests are predicted to show continually increasing tendencies. Deciduous forests have been predicted to increase the most in the future. With these results, the data on forest cover can be usefully applied as the main index for climate change. Further qualitative results are expected to be deduced from these data in the future, compared to the analyses of the relationship between tree species of forest and climate factors.

Detecting Land Cover Change in an Urban Area by Image Differencing and Image Ratioing Techniques (영상의 차연산과 비연산 기법에 의한 도시지역의 토지피복 변화탐지)

  • Lee, Jin-Duk;Jo, Chang-Hwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.43-52
    • /
    • 2004
  • This study presents the application of aerial photographs and the Korea Multi-Purpose Satellite, KOMPSAT-1 Electro-Optical Camera(EOC) imagery in detecting change in an urban area that has been rapidly growing. For the study, we used multi-temporal images which were acquired by two different sensors. Image registration and resampling were rallied out before performing change detection in a common reference system with the same spatial resolution. for all of the images. Results from image differencing and image ratioing techniques show that panchromatic aerial photographs and KOMPSAT-1 EOC images collected by different sensors have potential to detect changes of urban features such as building, road and other man-made structure. And the optimal threshold values were suggested in applying image differencing and image ratioing techniques for change detection.

  • PDF

West seacoast wetland monitoring using KOMPSAT series imageries in high spatial resolution (고해상도 KOMPSAT 시리즈 이미지를 활용한 서해연안 습지 변화 모니터링)

  • Sunwoo, Wooyeon;Kim, Daeun;Kim, Seongkyun;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.429-440
    • /
    • 2017
  • A series of multispectral high-resolution Korean Multi-Purpose Satellite (KOMPSAT) images were analyzed to detect the geographical changes in four different tidal flats in the west coast of South Korea. The method of unsupervised classification was used to generate a series of land use/land cover (LULC) maps from the satellite images, which were used as the input of the temporal trajectory analysis to detect the temporal change of coastal wetlands and its association with natural and anthropogenic activities. The accurately classified LULC maps extracted from the KOMPSAT images indicate that these multispectral high-resolution satellite data is highly applicable to generate good quality thematic maps for extracting wetlands. The result of the trajectory analysis showed that, while the tidal flat area of Gyeonggi and Jeollabuk provinces was estimated to have changed due to tidal effects, the reductive trajectory of the wetland areas belonging to the Saemangeum province was caused by a high degree of human-induced activities including large reclamation and urbanization. The conservation of the Jeungdo Wetland Protected Area in Jeollanam province revealed that the social and environmental policies can effectively protect coastal wetlands from degradation. Therefore, monitoring for wetland change using high resolution KOMPSAT is expected to be useful to coastal environment management and policy making.

Analysis on the Changes of Remote Sensing Indices on Each Land Cover Before and After Heavy Rainfall Using Multi-temporal Sentinel-2 Satellite Imagery and Daily Precipitation Data (다중시기 Sentinel-2 위성영상과 일강수량 자료를 활용한 집중호우 전후의 토지피복별 원격탐사지수 변화 분석)

  • KIM, Kyoung-Seop;MOON, Gab-Su;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.70-82
    • /
    • 2020
  • Recently, a lot of damages have been caused by urban flooding, and heavy rainfall that temporarily occur are the main causes of these phenomenons. The damages caused by urban flooding are identified as the change in the water balance in urban areas. To indirectly identify it, this research analyzed the change in the remote sensing indices on each land cover before and after heavy rainfall by utilizing daily precipitation data and multi-temporal Sentinel-2 satellite imagery. Cases of heavy rain advisory and warning were selected based on the daily precipitation data. And statistical fluctuation were compared by acquiring Sentinel-2 satellite images during the corresponding period and producing them as NDVI, NDWI and NDMI images about each land cover with a radius of 1,000 m based on the Seoul Weather Station. As a result of analyzing the maximum value, minimum value, mean and fluctuation of the pixels that were calculated in each remote sensing index image, there was no significant changes in the remote sensing indices in urban areas before and after heavy rainfall.

A Study on the Evaluation of the Different Thresholds for Detecting Urban Areas Using Remote-Sensing Index Images: A Case Study for Daegu, South Korea (원격탐사 지수 영상으로부터 도시 지역 탐지를 위한 임계점 평가에 관한 연구: 대구광역시를 사례로)

  • CHOUNG, Yun-Jae;LEE, Eung-Joon;JO, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.129-139
    • /
    • 2019
  • Mapping urban areas using the earth observation satellites is useful for monitoring urban expansions and measuring urban developments. In this research, the different thresholds for detecting the urban areas separately from the remote-sensing index images (normalized-difference built-up index(NDBI) and urban index(UI) images) generated from the Landsat-8 image acquired in Daegu, South Korea were evaluated through the following steps: (1) the NDBI and UI images were separately generated from the given Landsat-8 image; (2) the different thresholds (-0.4, -0.2, and 0) for detecting the urban areas separately from the NDBI and UI images were evaluated; and (3) the accuracy of each detected urban area was assessed. The experiment results showed that the threshold -0.2 had the best performance for detecting the urban areas from the NDBI image, while the threshold -0.4 had the best performance for detecting the urban areas from the UI image. Some misclassification errors, however, occurred in the areas where the bare soil areas were classified into urban areas or where the high-rise apartments were classified into other areas. In the future research, a robust methodology for detecting urban areas, including the various types of urban features, with less misclassification errors will be proposed using the satellite images. In addition, research on analyzing the pattern of urban expansion will be carried out using the urban areas detected from the multi-temporal satellite images.

Accuracy Assessment of Unsupervised Change Detection Using Automated Threshold Selection Algorithms and KOMPSAT-3A (자동 임계값 추출 알고리즘과 KOMPSAT-3A를 활용한 무감독 변화탐지의 정확도 평가)

  • Lee, Seung-Min;Jeong, Jong-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.975-988
    • /
    • 2020
  • Change detection is the process of identifying changes by observing the multi-temporal images at different times, and it is an important technique in remote sensing using satellite images. Among the change detection methods, the unsupervised change detection technique has the advantage of extracting rapidly the change area as a binary image. However, it is difficult to understand the changing pattern of land cover in binary images. This study used grid points generated from seamless digital map to evaluate the satellite image change detection results. The land cover change results were extracted using multi-temporal KOMPSAT-3A (K3A) data taken by Gimje Free Trade Zone and change detection algorithm used Spectral Angle Mapper (SAM). Change detection results were presented as binary images using the methods Otsu, Kittler, Kapur, and Tsai among the automated threshold selection algorithms. To consider the seasonal change of vegetation in the change detection process, we used the threshold of Differenced Normalized Difference Vegetation Index (dNDVI) through the probability density function. The experimental results showed the accuracy of the Otsu and Kapur was the highest at 58.16%, and the accuracy improved to 85.47% when the seasonal effects were removed through dNDVI. The algorithm generated based on this research is considered to be an effective method for accuracy assessment and identifying changes pattern when applied to unsupervised change detection.