• Title/Summary/Keyword: Multi-temporal Images

Search Result 214, Processing Time 0.029 seconds

A Study on Training Dataset Configuration for Deep Learning Based Image Matching of Multi-sensor VHR Satellite Images (다중센서 고해상도 위성영상의 딥러닝 기반 영상매칭을 위한 학습자료 구성에 관한 연구)

  • Kang, Wonbin;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1505-1514
    • /
    • 2022
  • Image matching is a crucial preprocessing step for effective utilization of multi-temporal and multi-sensor very high resolution (VHR) satellite images. Deep learning (DL) method which is attracting widespread interest has proven to be an efficient approach to measure the similarity between image pairs in quick and accurate manner by extracting complex and detailed features from satellite images. However, Image matching of VHR satellite images remains challenging due to limitations of DL models in which the results are depending on the quantity and quality of training dataset, as well as the difficulty of creating training dataset with VHR satellite images. Therefore, this study examines the feasibility of DL-based method in matching pair extraction which is the most time-consuming process during image registration. This paper also aims to analyze factors that affect the accuracy based on the configuration of training dataset, when developing training dataset from existing multi-sensor VHR image database with bias for DL-based image matching. For this purpose, the generated training dataset were composed of correct matching pairs and incorrect matching pairs by assigning true and false labels to image pairs extracted using a grid-based Scale Invariant Feature Transform (SIFT) algorithm for a total of 12 multi-temporal and multi-sensor VHR images. The Siamese convolutional neural network (SCNN), proposed for matching pair extraction on constructed training dataset, proceeds with model learning and measures similarities by passing two images in parallel to the two identical convolutional neural network structures. The results from this study confirm that data acquired from VHR satellite image database can be used as DL training dataset and indicate the potential to improve efficiency of the matching process by appropriate configuration of multi-sensor images. DL-based image matching techniques using multi-sensor VHR satellite images are expected to replace existing manual-based feature extraction methods based on its stable performance, thus further develop into an integrated DL-based image registration framework.

A Study on Combine Artificial Intelligence Models for multi-classification for an Abnormal Behaviors in CCTV images (CCTV 영상의 이상행동 다중 분류를 위한 결합 인공지능 모델에 관한 연구)

  • Lee, Hongrae;Kim, Youngtae;Seo, Byung-suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.498-500
    • /
    • 2022
  • CCTV protects people and assets safely by identifying dangerous situations and responding promptly. However, it is difficult to continuously monitor the increasing number of CCTV images. For this reason, there is a need for a device that continuously monitors CCTV images and notifies when abnormal behavior occurs. Recently, many studies using artificial intelligence models for image data analysis have been conducted. This study simultaneously learns spatial and temporal characteristic information between image data to classify various abnormal behaviors that can be observed in CCTV images. As an artificial intelligence model used for learning, we propose a multi-classification deep learning model that combines an end-to-end 3D convolutional neural network(CNN) and ResNet.

  • PDF

The Analysis of Temporal and Spatial Variation on the Vegetation Area of the Siwha Tidat Flat (시화 갯벌식생범위의 시-공간적 변이 분석)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.349-356
    • /
    • 2011
  • This research is aim to analyze of changing landscape and according to phenological cycle from image information of coastal environment obtained by multi-media were analyzed by camera and satellite image. The digital camera and satellite image were used for tidal flat vegetation monitoring during the construction of Sihwa lake. The vegetation type and phenological cycle of Sihwa tidal flat have been changed with the Sihwa lake ecosystem. The environment changes of Sihwa tidal flat area and ecological change were analyzed by field work digital camera images and satellite images. The airborne, UAV and satellite images were classified with the changed elements of coastal ecological environment and tidal flat vegetation monitoring carried out the changed area and shape of vegetation distribution with time series images.

A Study on the Preparation Method of Fruit Cropping Distribution Map using Satellite Images and GIS (위성영상과 GIS를 이용한 과수재배 분포도 작성 기법에 관한 연구)

  • Jo, Myung-Hee;Bu, Ki-Dong;Lee, Jung-Hyoup;Lee, Kwang-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.4
    • /
    • pp.73-86
    • /
    • 2000
  • This study focused on extracting an efficient method in the fruit cropping distribution mapping with various classification methods using multi-temporal satellite images and Geographic Information Systems(GIS). For this study, multi-temporal Landsat TM images, in observation data and existing fruit cropping area statistics were used to compare and analyze the properties of fruit cropping and seasonal distribution per classification method. As a result, this study concludes that Maximum Likelihood Method with earlier autumn satellite image was most efficient for the fruit cropping mapping using Landsat TM image. In addition, it was clarified that cropping area per administrative boundary was prepared and distribution pattern was identified efficiently using GIS spatial analysis.

  • PDF

Multi-temporal Landsat ETM+ Mosaic Method for Generating Land Cover Map over the Korean Peninsula (한반도 토지피복도 제작을 위한 다시기 Landsat ETM+ 영상의 정합 방법)

  • Kim, Sun-Hwa;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.87-98
    • /
    • 2010
  • For generating accurate land cover map over the whole Korean Peninsula, post-mosaic classification method is desirable in large area where multiple image data sets are used. We try to derive an optimal mosaic method of multi-temporal Landsat ETM+ scenes for the land cover classification over the Korea Peninsula. Total 65 Landsat ETM+ scenes were acquired, which were taken in 2000 and 2001. To reduce radiometric difference between adjacent Landsat ETM+ scenes, we apply three relative radiometric correction methods (histogram matching, 1st-regression method referenced center image, and 1st-regression method at each Landsat ETM+ path). After the relative correction, we generated three mosaic images for three seasons of leaf-off, transplanting, leaf-on season. For comparison, three mosaic images were compared by the mean absolute difference and computer classification accuracy. The results show that the mosaic image using 1st-regression method at each path show the best correction results and highest classification accuracy. Additionally, the mosaic image acquired during leaf-on season show the higher radiance variance between adjacent images than other season.

Land Cover Classification of the Korean Peninsula Using Linear Spectral Mixture Analysis of MODIS Multi-temporal Data (MODIS 다중시기 영상의 선형분광혼합화소분석을 이용한 한반도 토지피복분류도 구축)

  • Jeong, Seung-Gyu;Park, Chong-Hwa;Kim, Sang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.553-563
    • /
    • 2006
  • This study aims to produce land-cover maps of Korean peninsula using multi-temporal MODIS (Moderate Resolution Imaging Spectroradiometer) imagery. To solve the low spatial resolution of MODIS data and enhance classification accuracy, Linear Spectral Mixture Analysis (LSMA) was employed. LSMA allowed to determine the fraction of each surface type in a pixel and develop vegetation, soil and water fraction images. To eliminate clouds, MVC (Maximum Value Composite) was utilized for vegetation fraction and MinVC (Minimum Value Composite) for soil fraction image respectively. With these images, using ISODATA unsupervised classifier, southern part of Korean peninsula was classified to low and mid level land-cover classes. The results showed that vegetation and soil fraction images reflected phenological characteristics of Korean peninsula. Paddy fields and forest could be easily detected in spring and summer data of the entire peninsula and arable land in North Korea. Secondly, in low level land-cover classification, overall accuracy was 79.94% and Kappa value was 0.70. Classification accuracy of forest (88.12%) and paddy field (85.45%) was higher than that of barren land (60.71%) and grassland (57.14%). In midlevel classification, forest class was sub-divided into deciduous and conifers and field class was sub-divided into paddy and field classes. In mid level, overall accuracy was 82.02% and Kappa value was 0.6986. Classification accuracy of deciduous (86.96%) and paddy (85.38%) were higher than that of conifers (62.50%) and field (77.08%).

Search of submarine discharge locations with multi-temporal thermal infrared images and ground radar surveys

  • Onishi K.;Sairaiji M.;Rokugawa S.;Tokunaga T.;Sakuno Y.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.685-688
    • /
    • 2004
  • Fresh water discharge from the sea floor strongly affects a coastal ecology and the diffusion of contaminants. Much fresh water discharge has been found in the edge of Kurobe alluvial fan, in which annual rainfall is over 4000mm and there is abundant groundwater. However, it is difficult to find the groundwater discharge, thus the search of possible areas with some remote sensing tools is required. Because the temperature of the discharge point is relatively low compared with the surrounding sea water surfaces, there is a possibility to detect the area as an irregular zone of thermal infrared images. Two anomalous temperature zones, which have no surface streams from rivers, are detected by ASTER thermal-infrared images. One of them was verified as the groundwater discharge point by dives. In addition, the distribution of water table under the land side of the two areas is also detected as irregular zones by a ground-penetrating radar

  • PDF

Observation of Water Volume Changes of Rivers in Amazon Forests from Multi-temporal JERS-1 SAR Images

  • Takako, Sakurai-Amano;Takagi, Mikio
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.454-459
    • /
    • 2002
  • We have developed a new method to visualize river networks in tropical rain forests from JERS-1 SAR images. This method compresses river information in an original SAR image to a small image displaying wide rivers as dark objects in real size and narrower rivers as bright objects showing brightness level as an indicator of the discharge. We applied this method to 476 images of Amazon forests, 13 observations for path 415 data and 11 observations for path 416 data between 1993 and 1997. We confirmed that a change observed in a preliminary experiment was certainly a part of seasonal changes. The changes roughly correspond to the monthly precipitation changes. Through a simple digital analysis although qualitative, we also detected subtle but consistent regional differences among minor tributaries that belong to a major tributary basin.

  • PDF

Implementation of an Enhanced Change Detection System based on OGC Grid Coverage Specification

  • Lim, Young-Jae;Kim, Hong-Gab;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1099-1101
    • /
    • 2003
  • Change detection technology, which discovers the change information on the surface of the earth by comparing and analyzing multi-temporal satellite images, can be usefully applied to the various fields, such as environmental inspection, urban planning, forest policy, updating of geographical information and the military usage. In this paper, we introduce a change detection system that can extract and analyze change elements from high-resolution satellite imagery as well as low- or middle-resolution satellite imagery. The developed system provides not only 7 pixelbased methods that can be used to detect change from low- or middle-resolution satellite images but also a float window concept that can be used in manual change detection from highresolution satellite images. This system enables fast access to the very large image, because it is constituted by OGC grid coverage components. Also new change detection algorithms can be easily added into this system if once they are made into grid coverage components.

  • PDF

Forest Burned Area Detection Using Landsat 8/9 and Sentinel-2 A/B Imagery with Various Indices: A Case Study of Uljin (Landsat 8/9 및 Sentinel-2 A/B를 이용한 울진 산불 피해 탐지: 다양한 지수를 기반으로 다시기 분석)

  • Kim, Byeongcheol;Lee, Kyungil;Park, Seonyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.765-779
    • /
    • 2022
  • This study evaluates the accuracy in identifying the burned area in South Korea using multi-temporal data from Sentinel-2 MSI and Landsat 8/9 OLI. Spectral indices such as the Difference Normalized Burn Ratio (dNBR), Relative Difference Normalized Burn Ratio (RdNBR), and Burned Area Index (BAI) were used to identify the burned area in the March 2022 forest fire in Uljin. Based on the results of six indices, the accuracy to detect the burned area was assessed for four satellites using Sentinel-2 and Landsat 8/9, respectively. Sentinel-2 and Landsat 8/9 produce images every 16 and 10 days, respectively, although it is difficult to acquire clear images due to clouds. Furthermore, using images taken before and after a forest fire to examine the burned area results in a rapid shift because vegetation growth in South Korea began in April, making it difficult to detect. Because Sentinel-2 and Landsat 8/9 images from February to May are based on the same date, this study is able to compare the indices with a relatively high detection accuracy and gets over the temporal resolution limitation. The results of this study are expected to be applied in the development of new indices to detect burned areas and indices that are optimized to detect South Korean forest fires.