• Title/Summary/Keyword: Multi-temporal Images

Search Result 214, Processing Time 0.027 seconds

Urban Growth Monitoring using Multi-temporal Satellite Images and Geographic Information

  • Lee, Kwang-Jae;Kim, Youn-Soo;Kim, Byung-Kyo
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.470-472
    • /
    • 2003
  • The primary goal in this paper is to analyze urban growth patterns using multi-temporal remote sensing images and geographic information data. In order to accomplish this purpose, firstly data pre-processing is carried out, and then land-use maps are generated with ancillary data source by heads-up on-screen digitizing. Lastly, using the results of the previous stages, the patterns of land-use and urban changes are monitored by the proposed scheme. In this research, using the multi-temporal images and geographic information data, monitoring of urban growth was carried out with the application of urban land-use changes.

  • PDF

Automatic Co-registration of Cloud-covered High-resolution Multi-temporal Imagery (구름이 포함된 고해상도 다시기 위성영상의 자동 상호등록)

  • Han, You Kyung;Kim, Yong Il;Lee, Won Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.101-107
    • /
    • 2013
  • Generally the commercial high-resolution images have their coordinates, but the locations are locally different according to the pose of sensors at the acquisition time and relief displacement of terrain. Therefore, a process of image co-registration has to be applied to use the multi-temporal images together. However, co-registration is interrupted especially when images include the cloud-covered regions because of the difficulties of extracting matching points and lots of false-matched points. This paper proposes an automatic co-registration method for the cloud-covered high-resolution images. A scale-invariant feature transform (SIFT), which is one of the representative feature-based matching method, is used, and only features of the target (cloud-covered) images within a circular buffer from each feature of reference image are used for the candidate of the matching process. Study sites composed of multi-temporal KOMPSAT-2 images including cloud-covered regions were employed to apply the proposed algorithm. The result showed that the proposed method presented a higher correct-match rate than original SIFT method and acceptable registration accuracies in all sites.

Evaluation of Spatio-temporal Fusion Models of Multi-sensor High-resolution Satellite Images for Crop Monitoring: An Experiment on the Fusion of Sentinel-2 and RapidEye Images (작물 모니터링을 위한 다중 센서 고해상도 위성영상의 시공간 융합 모델의 평가: Sentinel-2 및 RapidEye 영상 융합 실험)

  • Park, Soyeon;Kim, Yeseul;Na, Sang-Il;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.807-821
    • /
    • 2020
  • The objective of this study is to evaluate the applicability of representative spatio-temporal fusion models developed for the fusion of mid- and low-resolution satellite images in order to construct a set of time-series high-resolution images for crop monitoring. Particularly, the effects of the characteristics of input image pairs on the prediction performance are investigated by considering the principle of spatio-temporal fusion. An experiment on the fusion of multi-temporal Sentinel-2 and RapidEye images in agricultural fields was conducted to evaluate the prediction performance. Three representative fusion models, including Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), SParse-representation-based SpatioTemporal reflectance Fusion Model (SPSTFM), and Flexible Spatiotemporal DAta Fusion (FSDAF), were applied to this comparative experiment. The three spatio-temporal fusion models exhibited different prediction performance in terms of prediction errors and spatial similarity. However, regardless of the model types, the correlation between coarse resolution images acquired on the pair dates and the prediction date was more significant than the difference between the pair dates and the prediction date to improve the prediction performance. In addition, using vegetation index as input for spatio-temporal fusion showed better prediction performance by alleviating error propagation problems, compared with using fused reflectance values in the calculation of vegetation index. These experimental results can be used as basic information for both the selection of optimal image pairs and input types, and the development of an advanced model in spatio-temporal fusion for crop monitoring.

Classification of Land Cover on Korean Peninsula Using Multi-temporal NOAA AVHRR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.381-392
    • /
    • 2003
  • Multi-temporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land-cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. A harmonic model that can represent seasonal variability is characterized by four components: mean level, frequency, phase and amplitude. The trigonometric components of the harmonic function inherently contain temporal information about changes in land-cover characteristics. Using the estimates which are obtained from sequential images through spectral analysis, seasonal periodicity can be incorporates into multi-temporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 ~ 2000 using a dynamic technique. Land-cover types were then classified both with the estimated harmonic components using an unsupervised classification approach based on a hierarchical clustering algorithm. The results of the classification using the harmonic components show that the new approach is potentially very effective for identifying land-cover types by the analysis of its multi-temporal behavior.

Multi-temporal Analysis of High-resolution Satellite Images for Detecting and Monitoring Canopy Decline by Pine Pitch Canker

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.545-560
    • /
    • 2019
  • Unlike other critical forest diseases, pine pitch canker in Korea has shown rather mild symptoms of partial loss of crown foliage and leaf discoloration. This study used high-resolution satellite images to detect and monitor canopy decline by pine pitch canker. To enhance the subtle change of canopy reflectance in pitch canker damaged tree crowns, multi-temporal analysis was applied to two KOMPSAT multispectral images obtained in 2011 and 2015. To assure the spectral consistency between the two images, radiometric corrections of atmospheric and shadow effects were applied prior to multi-temporal analysis. The normalized difference vegetation index (NDVI) of each image and the NDVI difference (${\Delta}NDVI=NDVI_{2015}-NDVI_{2011}$) between two images were derived. All negative ΔNDVI values were initially considered any pine stands, including both pitch canker damaged trees and other trees, that showed the decrease of crown foliage from 2011 to 2015. Next, $NDVI_{2015}$ was used to exclude the canopy decline unrelated to the pitch canker damage. Field survey data were used to find the spectral characteristics of the damaged canopy and to evaluate the detection accuracy from further analysis.Although the detection accuracy as assessed by limited number of field survey on 21 sites was 71%, there were also many false alarms that were spectrally very similar to the damaged canopy. The false alarms were mostly found at the mixed stands of pine and young deciduous trees, which might invade these sites after the pine canopy had already opened by any crown damages. Using both ${\Delta}NDVI$ and $NDVI_{2015}$ could be an effective way to narrow down the potential area of the pitch canker damage in Korea.

Estimation of Areal Change in Hwa-ong Tidal Flat due to Sea Dike Construction Project using Multi-temporal Landsat TM Images (다중시기 Landsat TM 영상을 이용한 화옹지구의 간척사업에 따른 갯벌면적의 변화 추정)

  • Kim Seong-Joon;Bang Ro-Sung;Kwon Hyung-Joong
    • KCID journal
    • /
    • v.10 no.1
    • /
    • pp.73-79
    • /
    • 2003
  • The purpose of this study is to suggest a simple estimation method of tidal flat areas using multi-temporal Landsat TM images due to the progress of sea dike construction for tidal land reclamation. As a case study, Hwa-ong project in which dike construct

  • PDF

Cloud Removal Using Gaussian Process Regression for Optical Image Reconstruction

  • Park, Soyeon;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.327-341
    • /
    • 2022
  • Cloud removal is often required to construct time-series sets of optical images for environmental monitoring. In regression-based cloud removal, the selection of an appropriate regression model and the impact analysis of the input images significantly affect the prediction performance. This study evaluates the potential of Gaussian process (GP) regression for cloud removal and also analyzes the effects of cloud-free optical images and spectral bands on prediction performance. Unlike other machine learning-based regression models, GP regression provides uncertainty information and automatically optimizes hyperparameters. An experiment using Sentinel-2 multi-spectral images was conducted for cloud removal in the two agricultural regions. The prediction performance of GP regression was compared with that of random forest (RF) regression. Various combinations of input images and multi-spectral bands were considered for quantitative evaluations. The experimental results showed that using multi-temporal images with multi-spectral bands as inputs achieved the best prediction accuracy. Highly correlated adjacent multi-spectral bands and temporally correlated multi-temporal images resulted in an improved prediction accuracy. The prediction performance of GP regression was significantly improved in predicting the near-infrared band compared to that of RF regression. Estimating the distribution function of input data in GP regression could reflect the variations in the considered spectral band with a broader range. In particular, GP regression was superior to RF regression for reproducing structural patterns at both sites in terms of structural similarity. In addition, uncertainty information provided by GP regression showed a reasonable similarity to prediction errors for some sub-areas, indicating that uncertainty estimates may be used to measure the prediction result quality. These findings suggest that GP regression could be beneficial for cloud removal and optical image reconstruction. In addition, the impact analysis results of the input images provide guidelines for selecting optimal images for regression-based cloud removal.

Application of Change Detection Techniques using KOMPSAT-1 EOC Images

  • Lee, Kwang-Jae;Kim, Youn-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.222-227
    • /
    • 2002
  • This research will examine into the capabilities of KOMPSAI-1 EOC image application in the field of urban environment and at the same time, with that as its foundation, come to understand the urban changes of the study areas. This research is constructed in three stages: Firstly, for application of change detection techniques, which utilizes multi-temporal remotely sensed data, the data normalization process is carried out. Secondly, change detection method is applied fur the systematic monitoring of land use changes, which utilizes multi-temporal EOC images. Lastly, by using the results of the application of land use changes, the existing land use map is updated. Consequently, the land-use change patterns are monitored, which utilize multi-temporal panchromatic EOC image data; and application potentials of ancillary data fur updating existing data can be presented. In this research, with the use of the land use change, monitoring of urban growth has been carried out, and the potential for the application of KOMPSAT-1 EOC images and the scope of application was examined. Henceforth, the future expansion of the scope of application of KOMPSAT-1 EOC image is anticipated.

  • PDF

Application of Change Detection Techniques Using KOMPSAT-1 EOC Images

  • Kim, Youn-Soo;Lee, Kwang-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.263-269
    • /
    • 2003
  • This research examined the capabilities of KOMPSAT-1 EOC images for the application of urban environment, including the urban changes of the study areas. This research is constructed in three stages: Firstly, for the application of change detection techniques, which utilizes multi-temporal remotely sensed data, the data normalization process is carried out. Secondly, the change detection method is applied for the systematic monitoring of land-use changes. Lastly, using the results of the previous stages, the land-use map is updated. Consequently, the patterns of land-use changes are monitored by the proposed scheme. In this research, using the multi-temporal KOMPSAT-1 EOC images and land-use maps, monitoring of urban growth was carried out with the application of land-use changes, and the potential and scope of the application of the EOC images were also examined.

Mapping Paddy Rice Varieties Using Multi-temporal RADARSAT SAR Images

  • Jang, Min-Won;Kim, Yi-Hyun;Park, No-Wook;Hong, Suk-Young
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.653-660
    • /
    • 2012
  • This study classified paddy fields according to rice varieties and monitored temporal changes in rice growth using SAR backscatter coefficients (${\sigma}^{\circ}$). A growing period time-series of backscatter coefficients was set up for nine fine-beam mode RADARSAT-1 SAR images from April to October 2005. The images were compared with field-measured rice growth parameters such as leaf area index (LAI), plant height, fresh and dry biomass, and water content in grain and plants for 45 parcels in Dangjin-gun, Chungnam Province, South Korea. The average backscatter coefficients for early-maturing rice varieties (13 parcels) ranged from -18.17 dB to -6.06 dB and were lower than those for medium-late maturing rice varieties during most of the growing season. Both crops showed the highest backscatter coefficient values at the heading stage (late July) for early-maturing rice, and the difference was greatest before harvest for early-maturing rice. The temporal difference in backscatter coefficients between rice varieties may play a key role in identifying early-maturing rice fields. On the other hand, comparisons with field-measured parameters of rice growth showed that backscatter coefficients decreased or remained on a plateau after the heading stage, even though the growth of the rice canopy had advanced.