• 제목/요약/키워드: Multi-target tracking

검색결과 170건 처리시간 0.03초

수영자 탐지 소나에서의 해상실험 데이터 분석 기반 자동 표적 추적 알고리즘 성능 분석 (Performance analysis of automatic target tracking algorithms based on analysis of sea trial data in diver detection sonar)

  • 이해호;권성철;오원천;신기철
    • 한국음향학회지
    • /
    • 제38권4호
    • /
    • pp.415-426
    • /
    • 2019
  • 본 논문은 연안 군사시설 및 주요 기반시설에 대한 침투세력을 감시하는 수영자 탐지 소나에서의 자동 표적추적 알고리즘을 다루었다. 이를 위해 수영자 탐지 소나에서의 해상실험 데이터를 분석하였고, 클러터 환경에서 자동표적 추적을 위한 트랙평가수단으로서 트랙존재확률 기반의 알고리즘을 적용하여 시스템을 구성하였다. 특히 트랙초기화, 확정, 제거, 합병 등의 트랙관리 알고리즘과 단일표적추적 IPDAF(Integrated Probabilistic Data Association Filter), 다중표적추적 LMIPDAF(Linear Multi-target Integrated Probabilistic Data Association Filter) 등의 표적추적 알고리즘을 제시하였으며, 해상실험 데이터 및 몬테카를로 모의실험 데이터를 이용하여 성능을 분석하였다.

복합모델 다차량 추종 기법을 이용한 차량 주행 제어 (Vehicle Cruise Control with a Multi-model Multi-target Tracking Algorithm)

  • 문일기;이경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.696-701
    • /
    • 2004
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion, have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

  • PDF

자탄 추적을 위한 JPDAS 다중표적 추적알고리즘 (JPDAS Multi-Target Tracking Algorithm for Cluster Bombs Tracking)

  • 김형래;전주환;류충호;유승오
    • 한국전자파학회논문지
    • /
    • 제27권6호
    • /
    • pp.545-556
    • /
    • 2016
  • JPDAF(Joint Probabilistic Data Association Filter)는 다중표적 추적에서 존재하는 표적에서 측정값들이 유래되었을 사후 확률을 이용하여 표적의 상태 추정치에 대한 갱신을 진행하는 방식이다. 이러한 JPDAF 방식에 고정구간 평활화(fixed-interval smoothing)기법을 적용하여 얻은 JPDAS(Joint Probabilistic Data Association Smoothing) 방식을 기반으로 이 논문에서는 모탄에서 분리되어 낙하하는 다수의 자탄에 대한 다중표적 추적알고리즘을 제안하였다. 독립적으로 JPDAF와 JPDAS를 이용한 다중표적 추적알고리즘을 100번 수행하여 얻은 표적의 상태 추정치와 표적의 실제 상태의 차이의 평균으로 두 다중표적 추적알고리즘의 성능을 비교하였다. 이를 기반으로, 제안한 JPDAS가 JPDAF보다 레이다의 표적 추적 문제에 대한 성능이 좋음을 보여주는 시뮬레이션 결과들이 제시되었다.

클러터를 고려한 다중 센서 환경에서의 AMMPF를 이용한 기동 표적 추적 알고리즘 연구 (Multi-sensor Single Maneuvering Target Tracking in Clutter using AMMPF)

  • 김다솔;송택렬;오원천
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2004년도 추계학술발표대회논문집 제23권 2호
    • /
    • pp.479-482
    • /
    • 2004
  • In this article we consider a single maneuvering target Tracking algorithm in the presence of missing measurements and high clutter environments for multi-sensor target tracking problem. The tracking algorithm is based on the Particle filtering method to predict and update target states. Proposed is the AMM-PF(Auxiliary Multiple Model Particle Filter)[2] method for maneuvering target tracking to improve performance in track estimate and maintenance with a high level of uncertainty. The algorithm we propose is compared to the Extended Kalman Filter(EKF). A simulation study is included.

  • PDF

Multi-Sensor Multi-Target Passive Locating and Tracking

  • Liu, Mei;Xu, Nuo;Li, Haihao
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권2호
    • /
    • pp.200-207
    • /
    • 2007
  • The passive direction finding cross localization method is widely adopted in passive tracking, therefore there will exist masses of false intersection points. Eliminating these false intersection points correctly and quickly is a key technique in passive localization. A new method is proposed for passive locating and tracking multi-jammer target in this paper. It not only solves the difficulty of determining the number of targets when masses of false intersection points existing, but also solves the initialization problem of elastic network. Thus this method solves the problem of multi-jammer target correlation and the elimination of static false intersection points. The method which dynamically establishes multiple hypothesis trajectory trees solves the problem of eliminating the remaining false intersection points. Simulation results show that computational burden of the method is lower, the elastic network can more quickly find all or most of the targets and have a more probability of locking the real targets. This method can eliminate more false intersection points.

해양환경에서 선박 추적을 위한 라이다를 이용한 궤적 초기화 및 표적 추적 필터 (Track Initiation and Target Tracking Filter Using LiDAR for Ship Tracking in Marine Environment)

  • 황태현;한정욱;손남선;김선영
    • 제어로봇시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.133-138
    • /
    • 2016
  • This paper describes the track initiation and target-tracking filter for ship tracking in a marine environment by using Light Detection And Ranging (LiDAR). LiDAR with three-dimensional scanning capability is more useful for target tracking in the short to medium range compared to RADAR. LiDAR has rotating multi-beams that return point clouds reflected from targets. Through preprocessing the cluster of the point cloud, the center point can be obtained from the cloud. Target tracking is carried out by using the center points of targets. The track of the target is initiated by investigating the normalized distance between the center points and connecting the points. The regular track obtained from the track initiation can be maintained by the target-tracking filter, which is commonly used in radar target tracking. The target-tracking filter is constructed to track a maneuvering target in a cluttered environment. The target-tracking algorithm including track initiation is experimentally evaluated in a sea-trial test with several boats.

순차적 칼만 필터를 적용한 다중센서 위치추정 알고리즘 실험적 검증 (Experimental Verification of Multi-Sensor Geolocation Algorithm using Sequential Kalman Filter)

  • 이성민;김영주;방효충
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.7-13
    • /
    • 2015
  • Unmanned air vehicles (UAVs) are getting popular not only as a private usage for the aerial photograph but military usage for the surveillance, reconnaissance and supply missions. For an UAV to successfully achieve these kind of missions, geolocation (localization) must be implied to track an interested target or fly by reference. In this research, we adopted multi-sensor fusion (MSF) algorithm to increase the accuracy of the geolocation and verified the algorithm using two multicopter UAVs. One UAV is equipped with an optical camera, and another UAV is equipped with an optical camera and a laser range finder. Throughout the experiment, we have obtained measurements about a fixed ground target and estimated the target position by a series of coordinate transformations and sequential Kalman filter. The result showed that the MSF has better performance in estimating target location than the case of using single sensor. Moreover, the experimental result implied that multi-sensor geolocation algorithm is able to have further improvements in localization accuracy and feasibility of other complicated applications such as moving target tracking and multiple target tracking.

Robust Generalized Labeled Multi-Bernoulli Filter and Smoother for Multiple Target Tracking using Variational Bayesian

  • Li, Peng;Wang, Wenhui;Qiu, Junda;You, Congzhe;Shu, Zhenqiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권3호
    • /
    • pp.908-928
    • /
    • 2022
  • Multiple target tracking mainly focuses on tracking unknown number of targets in the complex environment of clutter and missed detection. The generalized labeled multi-Bernoulli (GLMB) filter has been shown to be an effective approach and attracted extensive attention. However, in the scenarios where the clutter rate is high or measurement-outliers often occur, the performance of the GLMB filter will significantly decline due to the Gaussian-based likelihood function is sensitive to clutter. To solve this problem, this paper presents a robust GLMB filter and smoother to improve the tracking performance in the scenarios with high clutter rate, low detection probability, and measurement-outliers. Firstly, a Student-T distribution variational Bayesian (TDVB) filtering technology is employed to update targets' states. Then, The likelihood weight in the tracking process is deduced again. Finally, a trajectory smoothing method is proposed to improve the integrative tracking performance. The proposed method are compared with recent multiple target tracking filters, and the simulation results show that the proposed method can effectively improve tracking accuracy in the scenarios with high clutter rate, low detection rate and measurement-outliers. Code is published on GitHub.

Bayes Risk를 이용한 False Alarm이 존재하는 환경에서의 단일 표적-다중센서 추적 알고리즘 (On using Bayes Risk for Data Association to Improve Single-Target Multi-Sensor Tracking in Clutter)

  • 김경택;최대범;안병하;고한석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(4)
    • /
    • pp.159-162
    • /
    • 2001
  • In this Paper, a new multi-sensor single-target tracking method in cluttered environment is proposed. Unlike the established methods such as probabilistic data association filter (PDAF), the proposed method intends to reflect the information in detection phase into parameters in tracking so as to reduce uncertainty due to clutter. This is achieved by first modifying the Bayes risk in Bayesian detection criterion to incorporate the likelihood of measurements from multiple sensors. The final estimate is then computed by taking a linear combination of the likelihood and the estimate of measurements. We develop the procedure and discuss the results from representative simulations.

  • PDF