• 제목/요약/키워드: Multi-stress

검색결과 1,231건 처리시간 0.024초

폴리머 절연물 장기성능 평가를 위한 복합열화 시험기술 (Multi-aging Test Technology for Estimating Long Time Performance of Polymer Insulators)

  • 조한구;한세원;이운용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2332-2334
    • /
    • 1999
  • This paper presents the results of multi-stress chamber experiments done to examine the tracking and erosion performance of polymer insulator. Multi-stress testing is able to demonstrate deficiencies of polymer insulator materials and designs including the nature of interfaces in insulation design. Therefore, multi-stress testing is believed to a suitable test for evaluating the aging performance of polymer insulator designs. We have investigated IEC 61109 Annex C for estimating long time performance of polymer insulator.

  • PDF

AT 플라이백 다중공진형 컨버터 동작모드 해석 (Operational Mode Analysis of the AT Flyback Multi-Resonant Converter)

  • 박귀철;김창선
    • 전기학회논문지
    • /
    • 제56권7호
    • /
    • pp.1250-1254
    • /
    • 2007
  • The multi-resonant(MR) converter has a characteristics that the parasitic components existing in the converter are absorbed into the resonant circuits. The designed MR converter could be got a high efficiency and a high power density because the switching power losses are reduced effectively due to resonant switching circuit. However, the high resonant voltage stress of switching power devices leads to the conduction loss. In this paper, it is proposed the novel alternated(AT) flyback multi-resonant converter to overcome such a drawback. The suggested converter dc input is divided by two series input filter capacitors. The resonant stress voltage is reduced to 2-3 times the input voltage without any complexity and it provides the various circuit schemes in lots of applications. The proposed flyback MR converter is verified through simulation and experiment.

초기변형 최소화를 위한 광변조 압전 다층박막 액추에이터의 설계, 제작 및 실험 (Design Fabrication and Test of Piezoelectric Multi-Layer Cantilever Microactuators for Optical Signal Modulation)

  • 김명진;조영호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권9호
    • /
    • pp.495-501
    • /
    • 2000
  • This paper presents a method to minimize the initial deflection of a multi-layer piezoelectric microactuator without loosing its piezoelectric deflection performance required for light modulating micromirror devices. The multi-layer piezoelectric actuator composed of PZT silicon nitride and platinum layers deflects or buckles due to the gradient of residual stress. Based on the structural analysis results and relationship between process conditions and mechanical properties we have modified the fabrication process and the thickness of thin film layers to reduce the initial residual stress deflection without decreasing its piezoelectric deflection performance. The modified designs fabricated by surface-micromachining process achieved the 77% reduction of the initial deflection compared with that of the conventional method based on the measured micromechanical material properties is applicable to the design refinement of multi-layer MEMS devices and micromechanical structures.

  • PDF

Multi-Objective Design Optimization of Composite Stiffened Panel Using Response Surface Methodology

  • Murugesan, Mohanraj;Kang, Beom-Soo;Lee, Kyunghoon
    • Composites Research
    • /
    • 제28권5호
    • /
    • pp.297-310
    • /
    • 2015
  • This study aims to develop efficient composite laminates for buckling load enhancement, interlaminar shear stress minimization, and weight reduction. This goal is achieved through cover-skin lay-ups around skins and stiffeners, which amplify bending stiffness and defer delamination by means of effective stress distribution. The design problem is formulated as multi-objective optimization that maximizes buckling load capability while minimizing both maximum out-of-plane shear stress and panel weight. For efficient optimization, response surface methodology is employed for buckling load, two out-of-plane shear stresses, and panel weight with respect to one ply thickness, six fiber orientations of a skin, and four stiffener heights. Numerical results show that skin-covered composite stiffened panels can be devised for maximum buckling load and minimum interlaminar shear stresses under compressive load. In addition, the effects of different material properties are investigated and compared. The obtained results reveal that the composite stiffened panel with Kevlar material is the most effective design.

Corrosion Fatigue Characteristics in the Weld of Multi-Pass Welded A106 Gr B Steel Pipe

  • Bae, Dong-Ho;Kim, Chul-Han
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.114-121
    • /
    • 2004
  • In order to investigate the corrosion fatigue characteristics in the weld of multi-pass welded A 106 Gr B steel pipe, corrosion fatigue tests were performed under the various stress ratios and 3.5 wt% NaCl solution at room temperature. The corrosion fatigue characteristic curves were represented using crack closure concept. The obtained results are as follows : when the load frequency is 1.0 Hz, the crack opening point is transited in the region of $K_{max}$=20∼32 MPaㆍ $m^{1}$2/. In the low stress intensity factor range, the crack opening point is higher than that in air. However, in the high stress intensity factor range, it is lower than that in air. In the cases of 0.1 Hz and 0.01 Hz, the crack opening point gradually decreases to $K_{min}$ with $K_{max}$ increase.rease.

다단제어 가동보의 구조성능 평가를 위한 해석적 연구 (An Aanalytical Study of Structural Performance Evaluation for Multi-stage Control Movable Weir)

  • 이해수;박태현
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.61-68
    • /
    • 2021
  • Movable weirs with multi-stage control are necessary in many Korean rivers to actively control the water storage level. A mesh dependency test was performed to determine the appropriate number of meshes for structural analysis of movable weirs. The standing angles of movable weirs were set to 60°, 45°, 30°, and 15° for stress analysis. The standing angle of 0° was excluded from the analysis because it was unloaded. Changes in the standing angle led to changes in the water depth, maximum pressure, maximum strain, and maximum stress. The maximum average stress and the structural safety of the multi-stage control movable weir were computed and tested using the Ansys FEA software package.

국산 간벌 소경재를 이용한 다중접착접합 기둥부재의 압축강도성능 (Compression strength performance of multi-layer glued columns by using square lumbers produced from domestic small diameter logs)

  • 신일중;김윤희;장상식
    • 농업과학연구
    • /
    • 제38권3호
    • /
    • pp.533-540
    • /
    • 2011
  • This study is to develop a mulit-layer glued columns for construction of Korean-style houses by using domestic small diameter logs. Dried small square lumber glued each other to develop a multi-layer glued columns and evaluated its performance of strength. Then, predicted the design load of multi-layer glued columns and make a comparison between actual load and design load of multi-layer glued columns. In the results, allowable load by allowable stress of multi-layer glued columns was measured one-third of actual columns load and prediction load was measured less than 10~30% of the actual load. Therefore, muilt-layer glued member has a standard allowable stress of compressive of 13 MPa (Larix leptolepis) and 19 MPa (Chamaecyparis obtusa) when used as columns. Also, using compression strength of small diameter square logs could calculate maximum loads of multi-layer glued member as column.

고탄소강 다단 신선 와이어의 표면 잔류응력 예측모델 (Prediction Model of Surface Residual Stress for Multi-Pass Drawn High Carbon Steel Wire)

  • 김대운;이상곤;김병민;정진영;반덕영;이선봉
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.224-229
    • /
    • 2010
  • During the multi-pass wire drawing process, wires suffer a great amount of plastic deformation that is through the cross-section. This generates tensile residual stress at surface of drawn wires. The generated residual stress on surface is one of the problems for quality of wires so that prediction and reduction of residual stresses is important to avoid unexpected fracture. Therefore, in this study, the effect of process variables such as semi-die angle, bearing length and reduction ratio on the residual stress was evaluated through Finite Element Analysis. Based on the results of the Analysis, a prediction model was established for predicting residual stress on the surface of high carbon steel(AISI1072, AISI1082). To identify the effectiveness of the proposed model, X-ray diffraction is used to measure the residual stresses on the surface. As the result of the comparison between calculated residual stresses and measured residual stresses, the model could be used to predict residual stresses in cold drawn wire.

노치가공에 의한 다층 FCA 용접부의 잔류응력 재분포 특성 (Analysis of Welding Residual Stress Redistributions on Notched Multi-pass FCA Butt Weldment)

  • 방희선;방한서;오익현;김준형
    • Journal of Welding and Joining
    • /
    • 제28권1호
    • /
    • pp.86-91
    • /
    • 2010
  • In the present study, two-dimensional plane deformation thermo elasto-plastic analysis has been carried out, in order to investigate the thermal and mechanical behaviour (residual stress, plastic strain, magnitude of stress and their distribution and production mechanism) on multi-pass FCA butt weldment of high strength EH36-TMCP ultra thick plate. Moreover, this study can be considered as a basis for analysing the fracture toughness, KIC, and its effect on welding residual stress redistribution with notch on multi-pass FCA butt weldment, in future. The results of welding residual stress obtained from thermo elasto-plastic analysis has been compared and verified with the results measured by XRD.