• Title/Summary/Keyword: Multi-strain probiotic

Search Result 8, Processing Time 0.02 seconds

Effects of multi-strain probiotic supplementation on intestinal microbiota, tight junctions, and inflammation in young broiler chickens challenged with Salmonella enterica subsp. enterica

  • Chang, Chi Huan;Teng, Po Yun;Lee, Tzu Tai;Yu, Bi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1797-1808
    • /
    • 2020
  • Objective: This study assessed the effects of probiotics on cecal microbiota, gene expression of intestinal tight junction proteins, and immune response in the cecal tonsil of broiler chickens challenged with Salmonella enterica subsp. enterica. Methods: One-day-old broiler chickens (n = 240) were randomly allocated to four treatments: negative control (Cont), multi-strain probiotic-treated group (Pro), Salmonella-infected group (Sal), and multi-strain probiotic-treated and Salmonella-infected group (ProSal). All chickens except those in the Cont and Pro groups were gavaged with 1×108 cfu/mL of S. enterica subsp. enterica 4 days after hatching. Results: Our results indicated that body weight, weight gain, and feed conversion ratio of birds were significantly reduced (p<0.05) by Salmonella challenge. Chickens challenged with Salmonella decreased cecal microbial diversity. Chickens in the Sal group exhibited abundant Proteobacteria than those in the Cont, Pro, and ProSal groups. Salmonella infection downregulated gene expression of Occludin, zonula occludens-1 (ZO1), and Mucin 2 in the jejunum and Occludin and Claudin in the ileum. Moreover, the Sal group increased gene expression of interferon-γ (IFN-γ), interleukin-6 (IL-6), IL-1β, and lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF) and reduced levels of transforming growth factor-β4 and IL-10 compared with the other groups (p<0.05). However, chickens receiving probiotic diets increased Lactobacillaceae abundance and reduced Enterobacteriaceae abundance in the ceca. Moreover, supplementation with probiotics increased the mRNA expression of Occludin, ZO1, and Mucin 2 in the ileum (p<0.05). In addition, probiotic supplementation downregulated the mRNA levels of IFN-γ (p<0.05) and LITAF (p = 0.075) and upregulated IL-10 (p = 0.084) expression in the cecal tonsil. Conclusion: The administration of multi-strain probiotics modulated intestinal microbiota, gene expression of tight junction proteins, and immunomodulatory activity in broiler chickens.

Effects of Probiotic and Prebiotic on Average Daily Gain, Fecal Shedding of Escherichia Coli, and Immune System Status in Newborn Female Calves

  • Roodposhti, Pezhman Mohamadi;Dabiri, Najafgholi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1255-1261
    • /
    • 2012
  • Thirty two Holstein female calves (initial body weight = $40{\pm}3.0$ kg) were used to investigate the effects of probiotic and prebiotic on average daily gain (ADG), fecal E. coli count, white blood cell count, plasma IgG1 level and cell-mediated immune response to injection of phytohemagglutinin in suckling female calves. Calves were assigned randomly to one of the four treatments, including whole milk without additives (control), whole milk containing probiotic, whole milk containing prebiotic and whole milk containing probiotic and prebiotic (synbiotic). Average daily gain was greater in calves fed probiotic, prebiotic and synbiotic at weeks 6, 7 and 8 (p<0.05). E. coli count was significantly lower in calves fed probiotic, prebiotic and synbiotic on d 56 (p<0.05). There was no significant difference between treatments in blood samples and cell-mediated response. This study showed that addition of probiotic, prebiotic and combination of these additives to milk enhanced ADG and reduced fecal E. coli count in preruminant calves.

Development of Probiotic Products and Challenges (프로바이오틱 제품 개발 동향과 과제)

  • Seo, Jae-Gu;Lee, Gwa-Soo;Kim, Jin-Eung;Chung, Myung-Jun
    • KSBB Journal
    • /
    • v.25 no.4
    • /
    • pp.303-310
    • /
    • 2010
  • Probiotics beneficially affect the health of the host via various mechanisms in the intestine. Recent developments in probiotic products have mainly been made to maximize probiotic effects in human. In this regard, probiotic products containing doubly coated or encapsulated cells, multi-species probiotics, or high viable cell number (1010 viable cells/gram or more) have been developed and are already available in the market. Until now, the majority of probiotics contain live cells but little attention has been paid to other alternative products such as heat-killed cell or bacteriocin-containing ones, which could have broad applications due to advantages over live cell-based probiotics, such as safety and stability. In addition, genetically engineered lactic acid bacteria could be of great importance in the field of alimentary health if they are carefully designed for biological safety. Although a number of probiotics are marketed by claiming health benefits, regulations for health claims will be more stringent. Therefore sufficient scientific and clinical evidences supporting the safety and efficacy of the potential probiotic strain will be required by the regulatory authority for a health claim, which thus may have a huge impact on the future probiotic market.

Psychobiotic Effects of Multi-Strain Probiotics Originated from Thai Fermented Foods in a Rat Model

  • Luang-In, Vijitra;Katisart, Teeraporn;Konsue, Ampa;Nudmamud-Thanoi, Sutisa;Narbad, Arjan;Saengha, Worachot;Wangkahart, Eakapol;Pumriw, Supaporn;Samappito, Wannee;Ma, Nyuk Ling
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.1014-1032
    • /
    • 2020
  • This work aimed to investigate the psychobiotic effects of six bacterial strains on the mind and behavior of male Wistar rats. The probiotic (PRO) group (n=7) were rats pre-treated with antibiotics for 7 days followed by 14-day probiotic administration, antibiotics (ANT) group (n=7) were rats treated with antibiotics for 21 days without probiotics. The control (CON) group (n=7) were rats that received sham treatment for 21 days. The six bacterial strains with probiotic properties were mostly isolated from Thai fermented foods; Pedicoccus pentosaceus WS11, Lactobacillus plantarum SK321, L. fermentum SK324, L. brevis TRBC 3003, Bifidobacterium adolescentis TBRC 7154 and Lactococcus lactis subsp. lactis TBRC 375. The probiotics were freeze-dried into powder (6×109 CFU/5 g) and administered to the PRO group via oral gavage. Behavioral tests were performed. The PRO group displayed significantly reduced anxiety level and increased locomotor function using a marble burying test and open field test, respectively and significantly improved short-term memory performance using a novel object recognition test. Antibiotics significantly reduced microbial counts in rat feces in the ANT group by 100 fold compared to the PRO group. Probiotics significantly enhanced antioxidant enzymatic and non-enzymatic defenses in rat brains as assessed using catalase activity and ferric reducing antioxidant power assay, respectively. Probiotics also showed neuroprotective effects with less pyknotic cells and lower frequency of vacuolization in cerebral cortex. This multi-strain probiotic formulation from Thai fermented foods may offer a potential to develop psychobiotic-rich functional foods to modulate human mind and behaviors.

The effect of multi-strain probiotics as feed additives on performance, immunity, expression of nutrient transporter genes and gut morphometry in broiler chickens

  • Biswas, Avishek;Dev, Kapil;Tyagi, Pramod K;Mandal, Asitbaran
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.64-74
    • /
    • 2022
  • Objective: This study was conducted to investigate the effects of dietary multi-strain probiotic (MSP) (Bacillus coagulans Unique IS2 + Bacillus subtillis UBBS14 + Saccharomyces boulardii Unique 28) on performance, gut morphology and expression of nutrient transporter related genes in broiler chickens. Methods: A total of 256 (4×8×8) day-old CARIBRO Vishal commercial broiler chicks of uniform body weight were randomly distributed into four treatments with 8 replicates each and having eight chicks in each replicate. Four dietary treatments were T1 (negative control-basal diet), T2 (positive control-antibiotic bacitracin methylene disalicylate at 20 mg/kg diet), T3 (MSP at 107 colony-forming unit [CFU]/g feed), and T4 (MSP at 108 CFU/g feed). Results: During 3 to 6 weeks and 0 to 6 weeks, the body weight gain increased significantly (p<0.05) in T3 and T4 groups. The feed intake significantly (p<0.05) reduced from T1 to T3 during 0 to 3 weeks and the feed conversion ratio also significantly (p<0.05) improved in T3 and T4 during 0 to 6 weeks. The humoral and cell mediated immune response and the weight of immune organs were also significantly (p<0.05) improved in T3 and T4. However, significant (p<0.05) dietary effects were observed on intestinal histo-morphometry of ileum in T3 followed by T4 and T2. At 14 d post hatch, the relative gene expression of glucose transporter (GLUT5), sodium-dependent glucose transporter (SGLT1) and peptide transporter (PepT1) showed a significant (p<0.05) up-regulating pattern in T2, T3, and T4. Whereas, at 21 d post hatch, the gene expression of SGLT1 and PepT1 was significantly (p<0.05) downregulated in MSP supplemented treatments T3 and T4. Conclusion: The supplementation of MSP at 107 CFU/g diet showed significant effects with improved performance, immune response, gut morphology and expression of nutrient transporter genes. Thus, the MSP could be a suitable alternative to antibiotic growth promoters in chicken diets.

Effects of a multi-strain probiotic on growth, health, and fecal bacterial flora of neonatal dairy calves

  • Guo, Yongqing;Li, Zheng;Deng, Ming;Li, Yaokun;Liu, Guangbin;Liu, Dewu;Liu, Qihong;Liu, Qingshen;Sun, Baoli
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.204-216
    • /
    • 2022
  • Objective: The aim of this study was to investigate the effects of dietary supplementation with a multi-strain probiotic (MSP) product containing of Bifidobacterium animalis, Lactobacillus casei, Streptococcus faecalis, and Bacillus cerevisiae on growth, health, and fecal bacterial composition of dairy calves during the first month of life. Methods: Forty Holstein calves (24 female and 16 male) at 2 d of age were grouped by sex and date of birth then randomly assigned to 1 of 4 treatments: milk replacer supplementation with 0 g (0MSP), 2 g (2MSP), 4 g (4MSP), and 6 g (6MSP) MSP per calf per day. Results: Supplementation of MSP did not result in any significant differences in parameters of body measurements of calves during the 30 d period. As the dosage of MSP increased, the average daily gain (p = 0.025) and total dry matter intake (p = 0.020) of calves showed a linear increase. The fecal consistency index of the 2MSP, 4MSP, and 6MSP group calves were lower than that of the 0MSP group calves (p = 0.003). As the dosage of MSP increased, the concentrations of lactate dehydrogenase (p = 0.068) and aspartate aminotransferase (p = 0.081) in serum tended to decrease, whereas the concentration of total cholesterol increased quadratically (p = 0.021). The relative abundance of Dorea in feces was lower (p = 0.011) in the 2MSP, 4MSP, and 6MSP group calves than that in the 0MSP group calves. The relative abundance of Dorea (p = 0.001), Faecalibacterium (p = 0.050), and Mitsuokella (p = 0.030) decreased linearly, whereas the relative abundance of Prevotella tended to increase linearly as the dosage of MSP increased (p = 0.058). Conclusion: The MSP product can be used to reduce the diarrhea, improve the performance, and alter the composition of the fecal bacteria in neonatal dairy calves under the commercial conditions.

Effect of Saccharomyces boulardii CNCM-I 3799 and Bacillus subtilis CU-1 on Acute Watery Diarrhea: A Randomized Double-Blind Placebo-Controlled Study in Indian Children

  • Ghosh, Apurba;Sundaram, Balasubramaniam;Bhattacharya, Piyali;Mohanty, Nimain;Dheivamani, Nirmala;Mane, Sushant;Acharyya, Bhaswati;Kamale, Vijay;Poddar, Sumon;Khobragade, Akash;Thomas, Winston;Prabhudesai, Sumant;Choudhary, Ankita;Mitra, Monjori
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.5
    • /
    • pp.423-431
    • /
    • 2021
  • Purpose: To assess the effect of combination probiotic Saccharomyces boulardii CNCM-I 3799 and Bacillus subtilis CU-1 in outpatient management of acute watery diarrhea in children. Methods: A randomized double-blind placebo-controlled study was conducted in 180 participants aged six months to five years with acute mild to moderate diarrhea. All were enrolled from six centers across India and centrally randomized to receive S. boulardii CNCM-I 3799 and B. subtilis CU-1 or a placebo along with oral rehydration salts and zinc supplementation. Each participant was followed up for three months to assess recurrence of diarrhea. Results: The mean duration of diarrhea in the probiotic and placebo groups were 54.16 hours and 59.48 hours, respectively. The difference in the duration of diarrhea in those administered with probiotic or placebo within 24 hours of diarrhea onset was 25.21 hours. Furthermore, the difference in duration of diarrhea was 13.84 hours (p<0.05) for participants who were administered with probiotics within 48 hours. There were no significant differences in the stool frequencies between the two arms. After three months, 15% in the probiotic group and 18.5% in the placebo group reported episodes of diarrhea. The mean duration of diarrhea was considerably lower in the probiotic group, 31.02 hours versus 48 hours in placebo (p=0.017). Conclusion: S. boulardii CNCM-I 3799 and B. subtilis CU-1 combination was effective in reducing the duration of diarrhea when administered within 48 hours of diarrhea onset. Similarly, it reduced recurrence of diarrhea and its intensity in the subsequent three months.

Laying hen responses to multi-strain Bacillus-based probiotic supplementation from 25 to 37 weeks of age

  • Elijah Ogola Oketch;Myunghwan Yu;Jun Seon Hong;Nuwan Chamara Chaturanga;Eunsoo Seo;Hans Lee;Rafael Gustavo Hermes;Natasja Smeets;Apichaya Taechavasonyoo;Susanne Kirwan;Raquel Rodriguez-Sanchez;Jung Min Heo
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1418-1427
    • /
    • 2024
  • Objective: This study aimed to investigate the efficacy of Bacillus-based probiotics supplemented at two different levels to modulate the productive performance, egg quality, tibia traits, and specific cecal bacteria counts of Hy-Line Brown layers from 25 to 37 weeks of age. Methods: A total of 216 twenty-five-week-old hens were randomly distributed into 3 experimental diets with 12 replicates of 6 birds per cage. Diets included basal diet supplemented with 0 (CON), 3×108 (PRO1), or 3×109 (PRO2) colony-forming unit (CFU) of the test probiotic containing Bacillus subtilis PB6, Bacillus subtilis FXA, and Bacillus licheniformis G3 per kilogram of feed. Results: Improved egg weights and mass at 29 weeks; and feed intake at 31 weeks (p<0.10) were noticed with the probiotic-supplemented PRO1 and PRO2 diets. Considering egg quality, the shell thickness, Haugh units, and yolk color were improved; but yolk cholesterol was lowered (p<0.05) with PRO1 and PRO2 diets at 29 weeks. At both 33 and 37 weeks, the egg-breaking strength, shell color and thickness, albumen height, Haugh units, and yolk color were improved; but yolk cholesterol was similarly lowered (p<0.05) with the PRO1 and PRO2 diets. Improved tibia Ca, ash, weights, and density; and raised cecal counts of Bifidobacteria and Lactobacilli (p<0.05) were noticed with PRO1 and PRO2 diets. Improved tibia P but reduced Clostridia counts (p<0.10) were also observed with the PRO1 and PRO2 diets. Conclusion: Probiotic supplementation of Bacillus subtilis PB6, Bacillus subtilis FXA, and Bacillus licheniformis G3 at 3×108 CFU/kg of feed is adequate to significantly improve egg quality, lower yolk cholesterol, enhance several tibia traits, and raise the populations of beneficial cecal bacteria. Modest improvements in several productive parameters and tibia P but reduced Clostridia were also observed; and could warrant further investigation of probiotic effects beyond the current test period.