• 제목/요약/키워드: Multi-static SONAR system

검색결과 5건 처리시간 0.016초

다중상태 소나시스템을 적용한 표적반향음 연구 - Part II : 수치모델링과 실험적 검증 (Investigation of Target Echoes in Multi-static SONAR system - Part II : Numerical Modeling with Experimental Verification)

  • 지윤희;배호석;변기훈;김재수;김우식;박상윤
    • 한국해양공학회지
    • /
    • 제28권5호
    • /
    • pp.440-451
    • /
    • 2014
  • A multi-static SONAR system consists of the transmitters and receivers separately in space. The active target echoes are received along the transmitter-target-receiver path and depend on the shape and aspect angle of the submerged objects at each receiver. Thus, the target echo algorithm used with a mono-static system, in which the transmitter and receiver are located at the same position, has limits in simulating the target echoes for a multi-static SONAR system. In this paper, a target echo modeling procedure for a 3D submerged object in space is described based on the Kirchhoff approximation, and the SONAR system is extended to a multi-static SONAR system. The scattered field from external structures is calculated on the visible surfaces, which is determined based on the locations of the transmitter and receiver. A series of experiments in an acoustic water tank was conducted to measure the target echoes from scaled targets with a single transmitter and 16 receivers. Finally, the numerical results were compared with experimental results and shown to be useful for simulating the target echoes/target strength in a multi-static SONAR system.

다중상태 소나시스템을 적용한 표적반향음 연구 - Part I : 측정시스템 설계 (Investigation of Target Echoes in Multi-static SONAR System - Part I : Design for Acoustic Measuring System)

  • 배호석;지윤희;김완진;김우식;김재수;윤성웅
    • 한국해양공학회지
    • /
    • 제28권5호
    • /
    • pp.429-439
    • /
    • 2014
  • The target echoes contain information on the target such as the orientation, kinematics, and internal structure, as well as the external geometrical shape of the target. In addition, the pattern of the target echoes depends on the arrangement of the transmitters and receivers in space. Therefore, the study of the target echoes in a multi-static SONAR system can be useful for detecting and tracking submerged objects using an underwater surveillance system. For this purpose, an acoustic measuring system for multi-static target echoes was designed and tested in an acoustic water tank. Some preliminary data are presented and discussed.

확장형 탐색구역에서 Multi-Static 운용 기반 대잠헬기의 탐색에 관한 연구 (An Efficient Search Strategy of Anti-Submarine Helicopter based on Multi-Static Operation in Furthest-On-Circles)

  • 김창현;오래근;김선효;최지웅;마정목
    • 한국군사과학기술학회지
    • /
    • 제21권6호
    • /
    • pp.877-885
    • /
    • 2018
  • The anti-submarine helicopter is the most effective weapon system in anti-submarine warfare. Recently changes in the introduction of the anti-submarine warfare sonar system are expected to operate multi-static sonar equipment of the anti-submarine helicopter. Therefore, it is required to study the operational concept of multi-static of anti-submarine helicopter. This paper studies on the optimal search of multi-static based on anti-submarine helicopter considering Furthest On Circles(FOC). First, the deployment of the sensors of the anti-submarine helicopter is optimized using genetic algorithms. Then, the optimized model is extended to consider FOC. Finally, the proposed model is verified by comparing pattern-deployment the search method in Korean Navy.

강건 절점위치 유한요소법을 이용한 수중 예인 케이블의 비선형 거동해석 (Nonlinear Analysis of Underwater Towed Cable Using Robust Nodal Position Finite Element Method)

  • 이은택;고광수;안형택;김성일;천승용;김정석;이병희
    • 대한조선학회논문집
    • /
    • 제53권5호
    • /
    • pp.388-399
    • /
    • 2016
  • A motion analysis of an underwater towed cable is a complex task due to its nonlinear nature of the problem. The major source of the nonlinearity of the underwater cable analysis is that the motion of the cable involves large rigid-body motion. This large rigid-body motion makes difficult to use standard displacement-based finite element method. In this paper, the authors apply recently developed nodal position-based finite element method which can deal with the geometric nonlinearity due to the large rigid-body motion. In order to enhance the stability of the large-scale nonlinear cable motion simulation, an efficient time-integration scheme is proposed, namely predictor/multi-corrector Newmark scheme. Three different predictors are introduced, and the best predictor in terms of stability and robustness for impulsive cable motion analysis is proposed. As a result, the nonlinear motion of underwater cable is predicted in a very efficient manner compared to the classical finite element of finite difference methods. The efficacy of the method is demonstrated with several test cases, involving static and dynamic motion of a single cable element, and also under water towed cable composed of multiple cable elements.

SHAPE 알고리즘을 이용한 사인파 주파수 변조 펄스의 상호간섭 억제 (Mutual interference suppression of the sinusoidal frequency modulated pulse using SHAPE algorithm)

  • 김근환;이동화
    • 한국산업정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.49-59
    • /
    • 2022
  • SHAPE 알고리즘은 펄스의 스펙트럼 형태를 원하는 대로 성형하면서, 이 외의 특성에는 왜곡을 발생시키지 않도록 설계할 수 있다는 장점이 있어 기존의 능동소나 펄스 설계에 활용되었다. 본 논문에서는 다중상태 소나 시스템을 위한 펄스를 설계할 때, 주파수 대역에서 인접한 펄스 간의 상호상관도를 감소시키면서도 펄스 자체의 성능 저하를 방지하기 위해 SHAPE 알고리즘을 적용한 펄스 신호 설계 기법을 제안한다. 이를 위해서 SHAPE 알고리즘의 경계함수를 펄스 대역폭으로 제한하도록 설정하였다. 제안하는 설계 기법을 사인화 주파수 변조 펄스 신호에 적용한 결과 상호상관도를 의미하는 peak cross-correlation level (PCCL)이 44.23 dB 감소하였다. PCCL이 수십 dB 감소하였음에도 모호성 함수의 변화가 크게 관찰되지 않았으며, 부엽의 평균값을 의미하는 integrated sidelobe level (ISL)이 11.64 dB 증가하였다.