• 제목/요약/키워드: Multi-stage refrigeration

검색결과 18건 처리시간 0.02초

냉동시스템 고장 진단 및 고장유형 분석을 위한 3단계 분류 알고리즘에 관한 연구 (A study on the 3-step classification algorithm for the diagnosis and classification of refrigeration system failures and their types)

  • 이강배;박성호;이희원;이승재;이승현
    • 한국융합학회논문지
    • /
    • 제12권8호
    • /
    • pp.31-37
    • /
    • 2021
  • 산업의 발전으로 도시화로 인해 건물의 규모가 커지면서, 건물의 공기 정화 및 쾌적한 실내 환경을 유지의 필요성 또한 증가하고 있다. 냉동 시스템의 모니터링 기술의 발전으로 건물 내에 발생하는 전력 소모량을 관리할 수 있게 되었다. 특히 상업용 건물에서 발생하는 전력 소모량 중 약 40%가 냉동 시스템에서 일어난다. 따라서 본 연구 냉동시스템 고장진단 알고리즘을 개발하기 위해서 냉동시스템의 구조를 이해하고, 냉동 시스템의 운영과정에서 발생하는 데이터를 수집 분석하여 다양한 유형과 심각도를 가지는 고장 상황을 조기에 신속하게 탐지 분류하고자 하였다. 특히 분류가 어려운 고장 유형들의 분류 정확도를 향상시키기 위하여 3단계 진단 및 분류 알고리즘을 개발하여 제안하였다. 다수의 실험과 초모수 (hyper parameter) 최적화 과정을 거쳐 각 단계에 적합한 분류 모형으로 SVM과 LGBM에 기반 한 모형을 제시하였다. 본 연구에서는 고장에 영향을 미치는 특성을 최대한 보존하면서, 선행연구에서 어려움을 겪었던 냉매 관련 고장을 포함한 모든 고장 유형을 우수한 결과로 도출하였다.

다단계 최적화 수법을 이용한 열원 설비 설계법에 관한 연구 (A Study on the Multi-level Optimization Method for Heat Source System Design)

  • 유민경;남유진
    • 설비공학논문집
    • /
    • 제28권7호
    • /
    • pp.299-304
    • /
    • 2016
  • In recent years, heat source systems which have a principal effect on the performance of buildings are difficult to design optimally as a great number of design factors and constraints in large and complicated buildings need to be considered. On the other hand, it is necessary to design an optimum system combination and operation planning for energy efficiency considering Life Cycle Cost (LCC). This study suggests a multi-level and multi-objective optimization method to minimize both LCC and investment cost using a genetic algorithm targeting an office building which requires a large cooling load. The optimum method uses a two stage process to derive the system combination and the operation schedule by utilizing the input data of cooling and heating load profile and system performance characteristics calculated by dynamic energy simulation. The results were assessed by Pareto analysis and a number of Pareto optimal solutions were determined. Moreover, it was confirmed that the derived operation schedule was useful for operating the heat source systems efficiently against the building energy requirements. Consequently, the proposed optimization method is determined by a valid way if the design process is difficult to optimize.

Analysis of Two-Dimensional Flow Fields in the Multi-Stage Turbomolecular Pump Using the DSMC Method

  • Heo, Joong-Sik;Hwang, Young-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권2호
    • /
    • pp.8-18
    • /
    • 2001
  • The direct simulation Monte Carlo Method is applied to investigate the two-dimensional flow fields of a turbomolecular pump(TMP) in both molecular and transition flow regions. The pumping characteristics of the TMP are investigated for a wide range of the Knudsen number. The maximum of compression ratio and of pumping speed strongly depend on the Knudsen number in transition region, while they weakly depend on the Knudsen number in free molecular flow region. The present numerical results show good agreement with the previously known experimental data. Finally. the results of the single blade row in both molecular and transition regions are used to predict the overall performance of a TMP, which has three kinds of blade with 24-rows.

  • PDF

DSMC법을 이용한 터보분자펌프 다단 익렬의 2차원 유동장 해석 (Analysis of two-dimensional flow fields in the multi-stage turbomolecular pump using the DSMC method)

  • 황영규;허중식;박종윤
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.83-94
    • /
    • 2000
  • The performance of a turbomolecular pump(TMP) in both molecular and transition flow regions is predicted by the numerical solutions of the Boltzmann equation obtained by the direct simulation Monte Carlo method. The compression characteristics of the TMP are investigated for a wide range of the Knudsen number( Kn ). The maximum compression ratios strongly depend on Kn in transition region, while do they weakly on Kn in free molecular flow region. The present numerical results of the single blade row in both molecular and transition regions are used to predict the overall performance of a TMP, which has three kinds of blade with 24-rows.

  • PDF

터보 분자 펌프(Turbomolecular pump)내의 자유 분자 유동에 관한 수치 해석적 연구 (A Numerical Study of a Free Molecular Flow in the Turbomolecular Pump)

  • 황영규;허중식
    • 설비공학논문집
    • /
    • 제8권2호
    • /
    • pp.219-229
    • /
    • 1996
  • In the free molecular flow range, the pumping performance of a turbomolecular pump has been predicted by calculation of the transmission probability employing the integral method and the test particle Monte-Carlo method. The velocities of molecules incident upon a moving blade are given by the random numbers, which are sampled from the Maxwell molecular velocity distribution function. The present results agree quantitatively with the previous known numerical results. For a multi-stage pump, the velocity profile of molecules between two blade rows is not Maxwell distribution. In this case, the Monte-Carlo method is employed to calculate the overall transmission probability for the entire set of blade rows. When the results of the approximate method combining the single stage solutions are compared with those of the Monte-Carlo method for the pump having six rows at C=0.6, the approximate method overestimates as much as 36% in the maximum compression ratio and 19% in the maximum pumping speed than does the Mote-Carlo method.

  • PDF

설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

건물데이터를 통한 건물에너지 절감 가능성에 대한 연구 : 도시단위의 거시적 분석부터 미시적 건물에너지 분석사례 (A Study of the Possibility of Building Energy Saving through the Building Data : A Case Study of Macro to Micro Building Energy Analysis)

  • 조수연;이승복
    • 설비공학논문집
    • /
    • 제29권11호
    • /
    • pp.580-591
    • /
    • 2017
  • In accordance with 2015 Paris agreement, each individual country around the world should voluntarily propose not only its (individual) reduction target, but also actively develop and present expansion targets of its scope and concrete reduction goals exceeding the previous ones. Accordingly, it is necessary to prepare a macroscopic, long-range strategy for reducing energy consumption and greenhouse gas emissions, which can cover a single building, town, city and eventually even a province. The purpose of this research is to gather and compile government-acquired data from various sources and (in accordance with contents and specificity), combine building data by stages by using multi-variable matrix and then analyze the significance of combined data for each stage. The first order data presents the probability and the cost effectiveness of energy saving on the scale of a city or a province, based only upon general information, size and power consumption of buildings. The second order data can identify a pattern of energy consumption for a building of a specific purpose and which tends to consume a larger amount of energy during one particular season (than others). Finally, the third order data can derive influential factors (base load, humidity) from the energy consumption pattern of a building, and thus propose an informed and practical energy-saving method to be applied in real time.

철도차량용 공기압축기의 열교환기 최적 설계를 위한 해석 연구 (Numerical Analysis for Optimal Design of Heat Exchanger in Air Compressor for Railroad Vehicle)

  • 김무선;정종덕;장성일;안준
    • 설비공학논문집
    • /
    • 제29권11호
    • /
    • pp.570-579
    • /
    • 2017
  • In this study, we examined the multi-stage piston-type air compressors typically used in a railroad vehicle, and the heat transfer efficiency was analyzed according to the design conditions of the heat exchanger (a compressor component module for cooling the compressed high temperature air). For the fin-tube heat exchanger used in the most air compressors, numerical analysis was performed to analyze heat transfer by defining the various rectangle tube sizes and the number of fin-per-unit area as design variables under the same flow rate of compressed air. Also, this analysis compared the temperature of the compressed air. Regarding environmental conditions for analysis, the flow rate of the external cooling air was measured and the mean value of the values was applied. And a "turbulence model" was considered in both the external flow of the cooling air and the internal flow inside the tube. From the results of analysis, it was found that the change of the aspect ratio value of the tube greatly influences the heat transfer efficiency of the compressed air, and influences if the fin density is relatively small. As a result, the optimum design specifications of the heat exchanger for air compressors were confirmed based on the analysis of the heat transfer efficiency, according to the design conditions of fin and tube by the operating temperature range of the compressed air.