• 제목/요약/키워드: Multi-stage Process

검색결과 526건 처리시간 0.024초

알루미늄 판재의 다단계 드로잉에 있어서 원통컵의 치수 정밀도 비교 (Dimensional Accuracy of Cylindrical Cups in Multi-Stage Drawing of Aluminum Sheet Metal)

  • 최종민;김종호
    • 소성∙가공
    • /
    • 제24권2호
    • /
    • pp.115-120
    • /
    • 2015
  • Deep drawing of cylindrical cups is one of the most fundamental and important processes in sheet metal forming. Circular cups are widely used in industrial fields such as automobile and electronic appliances. Some of these cups are formed by a one-stage process, others such as battery cases and beverage cans are made by a multi-stage process. In the current study the multi-stage deep drawing of aluminum sheet metal is examined. The process consists of two deep drawing operations followed by two ironing operations. The press die, which can be used for the four-stage forming process, was manufactured allowing punch and die components to be easily changed for various experiments. The rolling direction of both the sheet and the drawn cups was always positioned toward the horizontal x-direction on the die face to minimize experimental errors during the progressive forming. The dimensional accuracy of the cylindrical cups formed at each stage and the earing defect due to the anisotropy of sheet were investigated. The influence of anisotropy on the thickness distribution was also examined. Both the thickness and the outer diameter of the cups were measured and compared for each set of experimental conditions. It was found that the dimensional accuracy of cups rapidly improves by employing the ironing process and also by increasing the amount of ironing.

등속조인트용 외륜의 다단 냉간 단조공정을 위한 공정개선 및 유한요소 해석 (Process Modification and Numerical Simulation for an Outer Race of a CV Joint using Multi-Stage Cold Forging)

  • 강범수;구태완
    • 소성∙가공
    • /
    • 제23권4호
    • /
    • pp.211-220
    • /
    • 2014
  • The outer race of a constant velocity (CV) joint having six inner ball grooves has traditionally been manufactured by multi-stage warm forging, which includes forward extrusion, upsetting, backward extrusions, necking, ironing and sizing, and machining. In the current study, a multi-stage cold forging process is examined and an assessment for replacing and modifying the conventional multi-stage warm forging is made. The proposed procedure is simplified to the backward extrusion of the conventional process, and the sizing and necking are combined into a single sizing-necking step. Thus, the forging surface of the six ball grooves can be obtained without additional machining. To verify the suitability of the proposed process, a 3-dimensional numerical simulation on each operation was performed. The forging loads were also predicted. In addition, a structural integrity evaluation for the tools was carried out. Based on the results, it is shown that the dimensional requirements of the outer race can be well met.

다단계 기계가공공정의 최적검사계획에 관한 연구 (A Study on optimal Inspection plans in Multi-Stage Machining process)

  • 조재립;황의철
    • 산업경영시스템학회지
    • /
    • 제10권15호
    • /
    • pp.33-38
    • /
    • 1987
  • In establishing Multi-Stage Machining process inspection procedures, however, where costs of inspection md defective products are often directly measurable, a better method for formulating inspection plans is available. If one of the primary interest of a manufacturing concern is to maximize profits, then optimal inspection plans ought to be selected so as to minimize costs. This paper is aimed to find a methodology of optimal inspection planning in Multi-stage Machining process and to develope a proper algorithm.

  • PDF

다단계 생산공정에 대한 공리모델 (An Axiomatic model of the multi-stage production process)

  • 안웅
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1993년도 추계학술대회발표논문집; 서강대학교, 서울; 25 Sep. 1993
    • /
    • pp.175-184
    • /
    • 1993
  • Modeling the production process is a necessary and essential aspect of the production planning. This paper introduces a theoretical model of the multi-stage production process. A multi-stage production process is regarded as a network of interrelated production activities which use system exogenous inputs of goods in production and the intermediate products transfers between activities to produce final products. Our model is characterized by (1) a few of the production-related assumptions and (2) two types of elements "goods and activities" that are represented in terms of the network terminology. This model is different from the another multi-stage production models, so-called production network models in relation to the production-theoretical concept. It is not based on the concept of the production correspondence and the activity production functions, but the technology model of Koopmans. Koopmans.

  • PDF

2차원 및 3차원 연계해석을 통한 다단 자동냉간단조 공정의 강소성 유한요소해석 (Rigid-Plastic Finite Element Analysis of Multi-Stage Automatic Cold Forging Processes by Combined Analyses of Two-Dimensional and Three-Dimensional Approaches)

  • 이민철;전만수
    • 소성∙가공
    • /
    • 제17권3호
    • /
    • pp.155-160
    • /
    • 2008
  • We analyzed a sequence of multi-stage automatic cold forging processes composed of four axisymmetric processes followed by a non-axisymmetric process using rigid-plastic finite element based forging simulators. The forging sequence selected for an example involves a piercing process and a heading process accompanying folding or overlapping, which all make it difficult to simulate the processes. To reduce computational time and to enhance the solution reliability, only the non-symmetric process was analyzed by the three-dimensional approach after the axisymmetric processes were analyzed by the two-dimensional approach. It has been emphsized that this capability is very helpful in simulating the multi-stage automatic forging processes which are next to axisymmetric or involve several axisymmetric processes.

2차원 및 3차원 연계해석을 통한 다단 자동냉간단조 공정의 강소성 유한요소해석 (Rigid-Plastic Finite Element Analysis of Multi-Stage Automatic Cold Forging Processes by Combined Analyses of Two-Dimension and Three-Dimensional Approaches)

  • 이민철;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.195-200
    • /
    • 2007
  • We analyzed a sequence of multi-stage automatic cold forging processes composed of four axisymmetric processes followed by a non-axisymmetric process using rigid-plastic finite element based forging simulators. The forging sequence selected for an example involves a piercing process and a heading process accompanying folding or overlapping, which all make it difficult to simulate the processes. To reduce computational time and to enhance the solution reliability, only the non-symmetric process was analyzed by the three-dimensional approach after the axisymmetric processes were analyzed by the two-dimensional approach. It has been emphsized that this capability is very helpful in simulating the multi-stage automatic forging processes which are next to axisymmetric.

  • PDF

다단계 ?드로잉 가공에 대한 실험적 연구 (Experimental Study on the Multi-stage Deep Drawing Process)

  • 박민호;김상진;서대교
    • 소성∙가공
    • /
    • 제5권4호
    • /
    • pp.288-296
    • /
    • 1996
  • A method of determining an optimum blank shape for non-circular deep drawing process is extended to the multi-stage deep drawing process. As an example concentric two-stage square deep drawing process is considered and the ideal blank shape with uniform cup height and without flange part after the process is constructed by the backward tracing of rigid plastic FEM. The conventional square blank shapes are also adopted for the comparison of two cases. As a result it is confirmed that the drawn products with better thickness strain distribution and deeper cup depth could be obtained by the suggested ideal blank shapes.

  • PDF

박판 페어 하이드로포밍 공정의 성형성 향상을 위한 다단 성형 공정의 개발 (Improvement of Formability in the Multi-Stage Sheet Pair Hydroforming Process)

  • 김태정;정창균;양동열;한수식
    • 소성∙가공
    • /
    • 제12권8호
    • /
    • pp.702-709
    • /
    • 2003
  • In the automotive industry hydroforming of sheet metal pairs have received special attention because materials for various sheet metal components of vehicles have changed into the high strength steel, aluminum, and titanium blank having low formability. Uniform deformation over the whole region is a main advantage in the sheet hydroforming process. Because upper and lower parts could be produced simultaneously with one tool, hydroforming of sheet metal pairs is competitive in reducing the lead-time and development cost. In this paper, the multi-stage hydroforming process of sheet pair is proposed in order to increase the formability of a structural part like the oil pan shape. The upper die for forming oil pan shape is divided into two parts which can move separately. By the finite element simulation, the design parameters such as geometry of the tool and detailed specification of hydraulic pump were calculated and verified. For the strict comparison of the proposed process, the blank holding force is kept to a constant value during deformation by hydraulic valve. The deformed shape and strain distribution of the manufactured parts with the proposed process are compared with the results of simulation. In the multi-stage hydroforming process, maximum thickness strain was improved by more than 30 percent.

Data Segmentation for a Better Prediction of Quality in a Multi-stage Process

  • Kim, Eung-Gu;Lee, Hye-Seon;Jun, Chi-Hyuek
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권2호
    • /
    • pp.609-620
    • /
    • 2008
  • There may be several parallel equipments having the same function in a multi-stage manufacturing process, which affect the product quality differently and have significant differences in defect rate. The product quality may depend on what equipments it has been processed as well as what process variable values it has. Applying one model ignoring the presence of different equipments may distort the prediction of defect rate and the identification of important quality variables affecting the defect rate. We propose a procedure for data segmentation when constructing models for predicting the defect rate or for identifying major process variables influencing product quality. The proposed procedure is based on the principal component analysis and the analysis of variance, which demonstrates a better performance in predicting defect rate through a case study with a PDP manufacturing process.

  • PDF

탐색 알고리즘을 이용한 냉간 단조 공정 설계 (Multi-Stage Cold Forging Process Design with A* Searching Algorithm)

  • 김홍석;임용택
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 추계학술대회논문집
    • /
    • pp.30-36
    • /
    • 1995
  • Conventionally design for multi-stage cold forging depends on the designer's experience and decision-making. Due to such non-deterministic nature of the process sequence design, a flexible inference engine is needed for process design expert system. In this study, A* searching algorithm was introduced to arrive at the vetter process sequence design considering the number of forming stages and levels of effective strain, effective stress, and forming load during the porcess. In order to optimize the process sequence in producing the final part, cost function was defined and minimized using the proposed A* searching algorithm. For verification of the designed forming sequences, forming experiments and finite element analyses were carried out in the present investigation. The developed expert system using A* searching algorithm can produce a flexible design system based on changes in the number of forming stages and weights.

  • PDF