• Title/Summary/Keyword: Multi-species

Search Result 521, Processing Time 0.026 seconds

Triallyl Borate as an Effective Separator/Cathode Interphase Modifier for Lithium-ion Batteries

  • Ha Neul Kim;Hye Rim Lee;Taeeun Yim
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.272-282
    • /
    • 2023
  • Ni-rich layered oxides cathode has recently gained attention as an advanced cathode material due to their applicable energy density. However, as the Ni component in the layered site is increased, the high reactivity of Ni4+ results in parasitic reaction associated with decomposing electrolyte, which leads to a rapid decreasing the lifespan of the cell. The electrolyte additive triallyl borate (TAB) improves interfacial stability, leading to a stable cathode-electrolyte interphase (CEI) layer on the LNCM83 cathode. A multi-functionalized TAB additive can produce a uniformly distributed CEI layer via electrochemical oxidation, which implies an increase in long-term cycling performance. After 100 cycles at elevated temperature, the cell tested by 0.75 TAB retained 88.3% of its retention ratio, whereas the cell performed by TAB-free electrolyte retained 64.1% of its retention. Once the TAB additive formed CEI layers on the LNCM83 cathode, it inhibited the decomposition of carbonate-based solvents species in addition to the dissolution of transition metal components from the cathode. The addition of TAB to LNCM83 cathode material is believed to be a promising way to increase the electrochemical performance.

The Multi-Faceted Consequences of NRF2 Activation throughout Carcinogenesis

  • Christopher J. Occhiuto;Jessica A. Moerland;Ana S. Leal;Kathleen A. Gallo;Karen T. Liby
    • Molecules and Cells
    • /
    • v.46 no.3
    • /
    • pp.176-186
    • /
    • 2023
  • The oxidative balance of a cell is maintained by the Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway. This cytoprotective pathway detoxifies reactive oxygen species and xenobiotics. The role of the KEAP1/NRF2 pathway as pro-tumorigenic or anti-tumorigenic throughout stages of carcinogenesis (including initiation, promotion, progression, and metastasis) is complex. This mini review focuses on key studies describing how the KEAP1/NRF2 pathway affects cancer at different phases. The data compiled suggest that the roles of KEAP1/NRF2 in cancer are highly dependent on context; specifically, the model used (carcinogen-induced vs genetic), the tumor type, and the stage of cancer. Moreover, emerging data suggests that KEAP1/NRF2 is also important for regulating the tumor microenvironment and how its effects are amplified either by epigenetics or in response to co-occurring mutations. Further elucidation of the complexity of this pathway is needed in order to develop novel pharmacological tools and drugs to improve patient outcomes.

First Report of Xenoroussoella triseptata Isolated from Soil in Korea

  • Jung-Joo Ryu;Seung-Yeol Lee;In-Kyu Kang;Leonid N. Ten;Hee-Young Jung
    • The Korean Journal of Mycology
    • /
    • v.50 no.3
    • /
    • pp.195-204
    • /
    • 2022
  • A fungal strain, designated KNUF-20-NI009, was isolated from soil collected from Gunsan-si, Jeollabuk-do, Korea. The isolate showed cultural features typical of the genus Xenoroussoella. Colonies cultivated on malt extract agar were olivaceous-brown to pale olivaceous-white at the margins, with undersides of dark olivaceous to olivaceous-brown and a white margin. The conidia, with a size range of 2.7-5.1×1.6-3.3 ㎛ ($\bar{x}=3.6\times2.6{\mu}m$, n=50), were globoid to ellipsoid in shape, hyaline when immature, becoming light brown to golden-brown when mature, and characterized by 1 or 2 guttules. Multi-locus sequence analysis based on a combined dataset of internal transcribed spacer regions (ITS), large subunit rDNA (LSU), small subunit rDNA (SSU), translation elongation factor 1-alpha (TEF1α), and RNA polymerase II largest subunit (RPB2) sequences revealed KNUF-20-NI009 to be a strain of Xenoroussoella triseptata. This is the first report of this species in Korea.

Numerical simulation on integrated curing-leaching process of slag-blended cement pastes

  • Xiang-Nan Li;Xiao-Bao Zuo;Yu-Xiao Zou;Guang-Pan Zhou
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.45-60
    • /
    • 2023
  • Concrete in water environment is easily subjected to the attack of leaching, which causes its mechanical reduction and durability deterioration, and the key to improving the leaching resistance of concrete is to increase the compaction of its microstructure formed by the curing. This paper performs a numerical investigation on the intrinsic relationship between microstructures formed by the hydration of cement and slag and leaching resistance of concrete in water environment. Firstly, a shrinking-core hydration model of blended cement and slag is presented, in which the interaction of hydration process of cement and slag is considered and the microstructure composition is characterized by the hydration products, solution composition and pore structure. Secondly, based on Fick's law and mass conservation law, a leaching model of hardened paste is proposed, in which the multi-species ionic diffusion equation and modified Gérard model are established, and the model is numerically solved by applying the finite difference method. Finally, two models are combined by microstructure composition to form an integrated curing-leaching model, and it is used to investigate the relationship between microstructure composition and leaching resistance of slag-blended cement pastes.

Applications and Perspectives of Fluvial Biogeomorphology in the Stream Management of South Korea (우리나라 하천 관리에서 생물지형학의 적용과 전망)

  • Kim, Daehyun;Kim, Won;Kim, Eunsuk;Ock, Giyoung;Jang, Chang-Lae;Choi, Mikyoung;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • In fluvial and riparian ecosystems, biogeomorphological research has considered the complex, multi-way relationships between biological and hydro-geomorphological components over a wide range of spatial and temporal scales. In this review, we discussed the scope and processes of fluvial biogeomorphology by explaining (1) the multi-lateral interactions between organisms and hydrogeomorphic conditions, (2) the relationships between biodiversity and habitat heterogeneity, and (3) the effects of disturbance on ecosystem patterns. Over time, an organism-landform complex along streams transitions in the sequences of geomorphic, pioneer, biogeomorphic, and ecological stages. Over space, water flow and sediment distributions interact with vegetation to modify channel topography. It is the habitat heterogeneity in streams that enhances riparian biodiversity. However, in the areas downstream of a dam, habitat types and conditions are substantially damaged and biodiversity should be reduced. In South Korea, riparian vegetation flourishes in general and, in particular, invasive species actively colonize in accordance with the changes in the fluvial conditions driven by local disturbances and global climate change. Therefore, the importance of understanding reciprocal relationships between living organisms and hydrogeomorphic conditions will ever increase in this era of rapid climate change and anthropogenic pressure. The fluvial biogeomorphic framework reviewed in this article will contribute to the ecological management and restoration of streams in Korea.

Vegetation Structure Characteristics and Management Plan of Mulgeun Fish Shelter Forest in the Southern Coast (남해안 물건리 방조어부림의 식생구조 특성 및 관리방안)

  • Lee, Soo-Dong;Kim, Mi-Jeong;Kang, Hyun-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.1
    • /
    • pp.118-128
    • /
    • 2016
  • The purpose of this study is to present efficient methods of preserving and managing the fish shelter forest in Mulgun-ri on the southern coast of Korea on the basis of its humanistic, sociological and ecological characteristics. The study object is Korean natural monument No. 150, which is presumed to have been forested by descendants of Jeonju Lee Family who settled there, and village rituals are held every October to pray for the peace of the village. The forest is managed by Namhae-gun as a historical and cultural resource as well as its disaster-preventing, economic, and environmental and ecological functions. The linear form of the area is $23,962.6m^2$ and farmland(48.5%) and urbanization area(38.2%) are extensively located in its periphery area. Actual vegetation was sub-classified into three types of land according to use pressure and whether or not damage was done: land where its stratification was formed; land where it was restored, and the land where it was damaged. Plant communities were sub-classified into Aphananthe aspera community(I) and Zelkova serrata community(II) which had a low use pressure; Z. serrata-Chionanthus retusa-A. aspera community(III) and A. aspera-Z. serrata community(IV) which had a high use pressure; and Celtis sinensis-A. aspera community(V) whose underlayer was damaged by use. Fragmentation of the forest is under way and its inside vegetation growth is hampered due to the installation of traffic and resting facilities such as the through roads costal roads, wooden-deck walkways, parking lots, washstands, etc. As a restoration management plan for this, the following were required: an establishment of preferred restoration area; a selection of restoration vegetation species; and an appropriate restoration method. The damaged area($7,868.2m^2$) will have to be set up as the preferred restoration area; seedlings of restored vegetation species should be raised with dominant species within the forest(i.e., Z. serrata, A. aspera, C. sinensis, and C. retusa) as their 'mother trees' for the benefit of for the next-generation forest; and sub-tree and shrub layer should be complementarily planted with 5 and 115 trees(unit $100m^2$) respectively to facilitate the formation of a multi-layered vegetation structure. In addition, resting facilities scattered inside the forest should be demolished; and indiscriminate use of them should be controlled; management and monitoring should be carried out so that the area can be preserved and restored as a deciduous broad-leaved forest.

Seedling Plug and Cutting Method for Multi-propagation of Ornamental Miscanthus Spp. (조경용 억새의 대량번식을 위한 플러그묘와 삽목번식법)

  • Hwang, Kyung Sik;Joo, Song Tak;Ha, Soo Sung;Kim, Ki Dong;Joo, Young Kyoo
    • Weed & Turfgrass Science
    • /
    • v.7 no.3
    • /
    • pp.275-282
    • /
    • 2018
  • Miscanthus species are known as a genus of eco-friendly and low-maintenance cost ornamental grasses. Plug and cutting methods were tested for multi-propagation of most promising ornamental Miscanthus species in greenhouse and field plot. The plug formation period with three different cell sizes with four cultivars (M. sinensis 'Andersson', 'Strictus', 'Gracillimus', 'Variegatus') were evaluated the seedling development stages with two irrigation types of the over-head and the bottom watering in greenhouse and field plot afterward during 2015-2016 season. In seedling plug test, the size of tray cell affected the plug formation. Bottom irrigation resulted positively on plant height, weight, root and tiller development compared with the over-head irrigation. Plug cell size affected the plant growth in the field after transplanting. All of the 3 Miscanthus species showed higher rates of successful propagation at the lower nodes before inflorescence formation (vegetative growth stage). To analyze the survival factors of M. xgiganteus cutting, the cutting time, node part, and culm diameter were tested as independent variables with the binary logistic model. The survival probability was influenced by node part and culm diameter significantly. The third and fifth node parts showed 0.12 (8X higher failure probability) and 0.02 (50X higher failure probability) times less survival probability. It means the survival probability will be increased by using older and lower part of cuttings during a vegetative growth stage before inflorescences of M. xgiganteus.

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF

Evaluation of applicability of linkage modeling using PHABSIM and SWAT (PHABSIM과 SWAT을 이용한 연계모델링 적용성 평가)

  • Kim, Yongwon;Byeon, Sangdon;Park, Jinseok;Woo, Soyoung;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.819-833
    • /
    • 2021
  • This study is to evaluate applicability of linkage modeling using PHABSIM (Physical Habitat Simulation System) and SWAT (Soil and Water Assessment Tool) and to estimate ecological flow for target fishes of Andong downstream (4,565.7 km2). The SWAT was established considering 2 multi purpose dam (ADD, IHD) and 1 streamflow gauging station (GD). The SWAT was calibrated and validated with 9 years (2012 ~ 2020) data of 1 stream (GD) and 2 multi-purpose dam (ADD, IHD). For streamflow and dam inflows (GD, ADD and IHD), R2, NSE and RMSE were 0.52 ~ 0.74, 0.48 ~ 0.71, and 0.92 ~ 2.51 mm/day respectively. As a result of flow duration analysis for 9 years (2012 ~ 2020) using calibrated streamflow, the average Q185 and Q275 were 36.5 m3/sec (-1.4%) and 23.8 m3/sec (0%) respectively compared with the observed flow duration and were applied to flow boundary condition of PHABSIM. The target stream was selected as the 410 m section where GD is located, and stream cross-section and hydraulic factors were constructed based on Nakdong River Basic Plan Report and HEC-RAS. The dominant species of the target stream was Zacco platypus and the sub-dominant species was Puntungia herzi Herzenstein, and the HSI (Habitat Suitability Index) of target species was collected through references research. As the result of PHABSIM water level and velocity simulation, error of Q185 and Q275 were analyzed -0.12 m, +0.00 m and +0.06 m/s, +0.09 m/s respectively. The average WUA (Weighted Usable Area) and ecological flow of Zacco platypus and Puntungia herzi Herzenstein were evaluated 76,817.0 m2/1000m, 20.0 m3/sec and 46,628.6 m2/1000m, 9.0 m3/sec. This results indicated Zacco platypus is more adaptable to target stream than Puntungia herzi Herzenstein.

Carbon Reduction and Enhancement for Greenspace in Institutional Lands (공공용지 녹지의 탄소저감과 증진방안)

  • Jo, Hyun-Kil;Park, Hye-Mi;Kim, Jin-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.4
    • /
    • pp.1-7
    • /
    • 2020
  • This study quantified annual uptake and storage of carbon by urban greenspace in institutional lands and suggested improvement of greenspace structures to enhance carbon reduction effects. The study selected a total of five study cities including Seoul, Daejeon, Daegu, Chuncheon, and Suncheon, based on areal size and nationwide distribution. Horizontal and vertical greenspace structures were field-surveyed, after institutional greenspace lots were selected using a systematic random sampling method on aerial photographs of the study cities. Annual uptake and storage of carbon by woody plants were computed applying quantitative models of each species developed for urban landscape trees and shrubs. Tree density and stem diameter (at breast height) in institutional lands averaged 1.4±0.1 trees/100 ㎡ and 14.9±0.2 cm across the study cities, respectively. Of the total planted area, the ratio of single-layered planting only with trees, shrubs, or grass was higher than that of multi-layered structures. Annual uptake and storage of carbon per unit area by woody plants averaged 0.65±0.04 t/ha/yr and 7.37±0.47 t/ha, which were lower than those for other greenspace types at home and abroad. This lower carbon reduction was attributed to lower density and smaller size of trees planted in institutional lands studied. Nevertheless, the greenspace in institutional lands annually offset carbon emissions from institutional electricity use by 0.6 (Seoul)~1.9% (Chuncheon). Tree planting in potential planting spaces was estimated to sequester additionally about 18% of the existing annual carbon uptake. Enhancing carbon reduction effects requires active tree planting in the potential spaces, multi-layered/clustered planting composed of the upper trees, middle trees and lower shrubs, planting of tree species with greater carbon uptake capacity, and avoidance of the topiary tree maintenance. This study was focused on finding out greenspace structures and carbon offset levels in institutional lands on which little had been known.