• 제목/요약/키워드: Multi-sensor Tracking

검색결과 132건 처리시간 0.034초

On Addressing Network Synchronization in Object Tracking with Multi-modal Sensors

  • Jung, Sang-Kil;Lee, Jin-Seok;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권4호
    • /
    • pp.344-365
    • /
    • 2009
  • The performance of a tracking system is greatly increased if multiple types of sensors are combined to achieve the objective of the tracking instead of relying on single type of sensor. To conduct the multi-modal tracking, we have previously developed a multi-modal sensor-based tracking model where acoustic sensors mainly track the objects and visual sensors compensate the tracking errors [1]. In this paper, we find a network synchronization problem appearing in the developed tracking system. The problem is caused by the different location and traffic characteristics of multi-modal sensors and non-synchronized arrival of the captured sensor data at a processing server. To effectively deliver the sensor data, we propose a time-based packet aggregation algorithm where the acoustic sensor data are aggregated based on the sampling time and sent to the server. The delivered acoustic sensor data is then compensated by visual images to correct the tracking errors and such a compensation process improves the tracking accuracy in ideal case. However, in real situations, the tracking improvement from visual compensation can be severely degraded due to the aforementioned network synchronization problem, the impact of which is analyzed by simulations in this paper. To resolve the network synchronization problem, we differentiate the service level of sensor traffic based on Weight Round Robin (WRR) scheduling at the routers. The weighting factor allocated to each queue is calculated by a proposed Delay-based Weight Allocation (DWA) algorithm. From the simulations, we show the traffic differentiation model can mitigate the non-synchronization of sensor data. Finally, we analyze expected traffic behaviors of the tracking system in terms of acoustic sampling interval and visual image size.

다중주기 칼만 필터를 이용한 비동기 센서 융합 (Asynchronous Sensor Fusion using Multi-rate Kalman Filter)

  • 손영섭;김원희;이승희;정정주
    • 전기학회논문지
    • /
    • 제63권11호
    • /
    • pp.1551-1558
    • /
    • 2014
  • We propose a multi-rate sensor fusion of vision and radar using Kalman filter to solve problems of asynchronized and multi-rate sampling periods in object vehicle tracking. A model based prediction of object vehicles is performed with a decentralized multi-rate Kalman filter for each sensor (vision and radar sensors.) To obtain the improvement in the performance of position prediction, different weighting is applied to each sensor's predicted object position from the multi-rate Kalman filter. The proposed method can provide estimated position of the object vehicles at every sampling time of ECU. The Mahalanobis distance is used to make correspondence among the measured and predicted objects. Through the experimental results, we validate that the post-processed fusion data give us improved tracking performance. The proposed method obtained two times improvement in the object tracking performance compared to single sensor method (camera or radar sensor) in the view point of roots mean square error.

항공관제용 감시자료처리시스템 항적 추적 성능 검증 (Target Tracking Performance Verification of Surveillance Data Processing System for Air Traffic Control)

  • 은연주;전대근;염찬홍
    • 항공우주기술
    • /
    • 제11권2호
    • /
    • pp.171-181
    • /
    • 2012
  • 항공관제시스템을 구성하는 하부 시스템중 하나인 감시자료처리시스템(SDP, Surveillance Data Processor)은 항공 감시 레이더 등 다양한 감시 센서로부터 감시자료를 전달 받아 항공기의 항적을 추적하는 시스템으로서, SDP의 항적 추적 성능은 항공기의 안전 운항에 직접적인 영향을 미친다. 따라서 개발과정에서 SDP의 요구 성능에 대한 검증은 필수적이며, 특히 대표적인 다중 센서 다중 타겟 추적(Multi-Sensor Multi-Target Tracking)시스템으로서 다양한 타겟 추적 방법이 존재함에 따라 정량적인 추적 정확도 성능 평가가 중요하게 여겨지고 있다. 본 연구에서는 현재 한국항공우주연구원에서 개발 중인 SDP의 항적 추적 성능 검증을 위한 요구 성능 정의, 테스트 환경 구축, 테스트 결과에 대해 정리하였다.

다중 레이더 환경에서의 바이어스 오차 추정의 가관측성에 대한 연구와 정보 융합 (A Study of Observability Analysis and Data Fusion for Bias Estimation in a Multi-Radar System)

  • 원건희;송택렬;김다솔;서일환;황규환
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.783-789
    • /
    • 2011
  • Target tracking performance improvement using multi-sensor data fusion is a challenging work. However, biases in the measurements should be removed before various data fusion techniques are applied. In this paper, a bias removing algorithm using measurement data from multi-radar tracking systems is proposed and evaluated by computer simulation. To predict bias estimation performance in various geometric relations between the radar systems and target, a system observability index is proposed and tested via computer simulation results. It is also studied that target tracking which utilizes multi-sensor data fusion with bias-removed measurements results in better performance.

Time-Matching Poisson Multi-Bernoulli Mixture Filter For Multi-Target Tracking In Sensor Scanning Mode

  • Xingchen Lu;Dahai Jing;Defu Jiang;Ming Liu;Yiyue Gao;Chenyong Tian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1635-1656
    • /
    • 2023
  • In Bayesian multi-target tracking, the Poisson multi-Bernoulli mixture (PMBM) filter is a state-of-the-art filter based on the methodology of random finite set which is a conjugate prior composed of Poisson point process (PPP) and multi-Bernoulli mixture (MBM). In order to improve the random finite set-based filter utilized in multi-target tracking of sensor scanning, this paper introduces the Poisson multi-Bernoulli mixture filter into time-matching Bayesian filtering framework and derive a tractable and principled method, namely: the time-matching Poisson multi-Bernoulli mixture (TM-PMBM) filter. We also provide the Gaussian mixture implementation of the TM-PMBM filter for linear-Gaussian dynamic and measurement models. Subsequently, we compare the performance of the TM-PMBM filter with other RFS filters based on time-matching method with different birth models under directional continuous scanning and out-of-order discontinuous scanning. The results of simulation demonstrate that the proposed filter not only can effectively reduce the influence of sampling time diversity, but also improve the estimated accuracy of target state along with cardinality.

Bayes Risk를 이용한 False Alarm이 존재하는 환경에서의 단일 표적-다중센서 추적 알고리즘 (On using Bayes Risk for Data Association to Improve Single-Target Multi-Sensor Tracking in Clutter)

  • 김경택;최대범;안병하;고한석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(4)
    • /
    • pp.159-162
    • /
    • 2001
  • In this Paper, a new multi-sensor single-target tracking method in cluttered environment is proposed. Unlike the established methods such as probabilistic data association filter (PDAF), the proposed method intends to reflect the information in detection phase into parameters in tracking so as to reduce uncertainty due to clutter. This is achieved by first modifying the Bayes risk in Bayesian detection criterion to incorporate the likelihood of measurements from multiple sensors. The final estimate is then computed by taking a linear combination of the likelihood and the estimate of measurements. We develop the procedure and discuss the results from representative simulations.

  • PDF

Visual Tracking using Weighted Discriminative Correlation Filter

  • Song, Tae-Eun;Jang, Kyung-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권11호
    • /
    • pp.49-57
    • /
    • 2016
  • In this paper, we propose the novel tracking method which uses the weighted discriminative correlation filter (DCF). We also propose the PSPR instead of conventional PSR as tracker performance evaluation method. The proposed tracking method uses multiple DCF to estimates the target position. In addition, our proposed method reflects more weights on the correlation response of the tracker which is expected to have more performance using PSPR. While existing multi-DCF-based tracker calculates the final correlation response by directly summing correlation responses from each tracker, the proposed method acquires the final correlation response by weighted combining of correlation responses from the selected trackers robust to given environment. Accordingly, the proposed method can provide high performance tracking in various and complex background compared to multi-DCF based tracker. Through a series of tracking experiments for various video data, the presented method showed better performance than a single feature-based tracker and also than a multi-DCF based tracker.

순차적 칼만 필터를 적용한 다중센서 위치추정 알고리즘 실험적 검증 (Experimental Verification of Multi-Sensor Geolocation Algorithm using Sequential Kalman Filter)

  • 이성민;김영주;방효충
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.7-13
    • /
    • 2015
  • Unmanned air vehicles (UAVs) are getting popular not only as a private usage for the aerial photograph but military usage for the surveillance, reconnaissance and supply missions. For an UAV to successfully achieve these kind of missions, geolocation (localization) must be implied to track an interested target or fly by reference. In this research, we adopted multi-sensor fusion (MSF) algorithm to increase the accuracy of the geolocation and verified the algorithm using two multicopter UAVs. One UAV is equipped with an optical camera, and another UAV is equipped with an optical camera and a laser range finder. Throughout the experiment, we have obtained measurements about a fixed ground target and estimated the target position by a series of coordinate transformations and sequential Kalman filter. The result showed that the MSF has better performance in estimating target location than the case of using single sensor. Moreover, the experimental result implied that multi-sensor geolocation algorithm is able to have further improvements in localization accuracy and feasibility of other complicated applications such as moving target tracking and multiple target tracking.

다중표적 추적필터와 자료연관 기법동향 (Multi-target Tracking Filters and Data Association: A Survey)

  • 송택렬
    • 제어로봇시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.313-322
    • /
    • 2014
  • This paper is to survey and put in perspective the working methods of multi-target tracking in clutter. This paper includes theories and practices for data association and related filter structures and is motivated by increasing interest in the area of target tracking, security, surveillance, and multi-sensor data fusion. It is hoped that it will be useful in view of taking into consideration a full understanding of existing techniques before using them in practice.

멀티 라인 레이저 비전 센서를 이용한 고속 용접선 추적 기술 (High speed seam tracking using multi-line laser vision sensor)

  • 성기은;이세헌
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.584-587
    • /
    • 2002
  • A vision sensor measure range data using laser light source. This sensor generally use patterned laser which shaped single line. But this vision sensor cannot satisfy new trend which needs laster and more precise processing. The sensor's sampling rate increases as reduced image processing time. However, the sampling rate can not over 30fps, because a camera has mechanical sampling limit. If we use multi line laser pattern, we will measure multi range data in one image. In the case of using same sampling rate camera, number of 2D range data profile in one second is directly proportional to laser line's number. For example, the vision sensor using 5 laser lines can sample 150 profiles per second in best condition.

  • PDF