• Title/Summary/Keyword: Multi-scale neural networks

Search Result 40, Processing Time 0.032 seconds

Texture segmentation using Neural Networks and multi-scale Bayesian image segmentation technique (신경회로망과 다중스케일 Bayesian 영상 분할 기법을 이용한 결 분할)

  • Kim Tae-Hyung;Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.39-48
    • /
    • 2005
  • This paper proposes novel texture segmentation method using Bayesian estimation method and neural networks. We use multi-scale wavelet coefficients and the context information of neighboring wavelets coefficients as the input of networks. The output of neural networks is modeled as a posterior probability. The context information is obtained by HMT(Hidden Markov Tree) model. This proposed segmentation method shows better performance than ML(Maximum Likelihood) segmentation using HMT model. And post-processed texture segmentation results as using multi-scale Bayesian image segmentation technique called HMTseg in each segmentation by HMT and the proposed method also show that the proposed method is superior to the method using HMT.

Sound event detection based on multi-channel multi-scale neural networks for home monitoring system used by the hard-of-hearing (청각 장애인용 홈 모니터링 시스템을 위한 다채널 다중 스케일 신경망 기반의 사운드 이벤트 검출)

  • Lee, Gi Yong;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.600-605
    • /
    • 2020
  • In this paper, we propose a sound event detection method using a multi-channel multi-scale neural networks for sound sensing home monitoring for the hearing impaired. In the proposed system, two channels with high signal quality are selected from several wireless microphone sensors in home. The three features (time difference of arrival, pitch range, and outputs obtained by applying multi-scale convolutional neural network to log mel spectrogram) extracted from the sensor signals are applied to a classifier based on a bidirectional gated recurrent neural network to further improve the performance of sound event detection. The detected sound event result is converted into text along with the sensor position of the selected channel and provided to the hearing impaired. The experimental results show that the sound event detection method of the proposed system is superior to the existing method and can effectively deliver sound information to the hearing impaired.

Interpolation based Single-path Sub-pixel Convolution for Super-Resolution Multi-Scale Networks

  • Alao, Honnang;Kim, Jin-Sung;Kim, Tae Sung;Oh, Juhyen;Lee, Kyujoong
    • Journal of Multimedia Information System
    • /
    • v.8 no.4
    • /
    • pp.203-210
    • /
    • 2021
  • Deep leaning convolutional neural networks (CNN) have successfully been applied to image super-resolution (SR). Despite their great performances, SR techniques tend to focus on a certain upscale factor when training a particular model. Algorithms for single model multi-scale networks can easily be constructed if images are upscaled prior to input, but sub-pixel convolution upsampling works differently for each scale factor. Recent SR methods employ multi-scale and multi-path learning as a solution. However, this causes unshared parameters and unbalanced parameter distribution across various scale factors. We present a multi-scale single-path upsample module as a solution by exploiting the advantages of sub-pixel convolution and interpolation algorithms. The proposed model employs sub-pixel convolution for the highest scale factor among the learning upscale factors, and then utilize 1-dimension interpolation, compressing the learned features on the channel axis to match the desired output image size. Experiments are performed for the single-path upsample module, and compared to the multi-path upsample module. Based on the experimental results, the proposed algorithm reduces the upsample module's parameters by 24% and presents slightly to better performance compared to the previous algorithm.

Pose Estimation with Binarized Multi-Scale Module

  • Choi, Yong-Gyun;Lee, Sukho
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.95-100
    • /
    • 2018
  • In this paper, we propose a binarized multi-scale module to accelerate the speed of the pose estimating deep neural network. Recently, deep learning is also used for fine-tuned tasks such as pose estimation. One of the best performing pose estimation methods is based on the usage of two neural networks where one computes the heat maps of the body parts and the other computes the part affinity fields between the body parts. However, the convolution filtering with a large kernel filter takes much time in this model. To accelerate the speed in this model, we propose to change the large kernel filters with binarized multi-scale modules. The large receptive field is captured by the multi-scale structure which also prevents the dropdown of the accuracy in the binarized module. The computation cost and number of parameters becomes small which results in increased speed performance.

Low Resolution Rate Face Recognition Based on Multi-scale CNN

  • Wang, Ji-Yuan;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1467-1472
    • /
    • 2018
  • For the problem that the face image of surveillance video cannot be accurately identified due to the low resolution, this paper proposes a low resolution face recognition solution based on convolutional neural network model. Convolutional Neural Networks (CNN) model for multi-scale input The CNN model for multi-scale input is an improvement over the existing "two-step method" in which low-resolution images are up-sampled using a simple bi-cubic interpolation method. Then, the up sampled image and the high-resolution image are mixed as a model training sample. The CNN model learns the common feature space of the high- and low-resolution images, and then measures the feature similarity through the cosine distance. Finally, the recognition result is given. The experiments on the CMU PIE and Extended Yale B datasets show that the accuracy of the model is better than other comparison methods. Compared with the CMDA_BGE algorithm with the highest recognition rate, the accuracy rate is 2.5%~9.9%.

Using neural networks to model and predict amplitude dependent damping in buildings

  • Li, Q.S.;Liu, D.K.;Fang, J.Q.;Jeary, A.P.;Wong, C.K.
    • Wind and Structures
    • /
    • v.2 no.1
    • /
    • pp.25-40
    • /
    • 1999
  • In this paper, artificial neural networks, a new kind of intelligent method, are employed to model and predict amplitude dependent damping in buildings based on our full-scale measurements of buildings. The modelling method and procedure using neural networks to model the damping are studied. Comparative analysis of different neural network models of damping, which includes multi-layer perception network (MLP), recurrent neural network, and general regression neural network (GRNN), is performed and discussed in detail. The performances of the models are evaluated and discussed by tests and predictions including self-test, "one-lag" prediction and "multi-lag" prediction of the damping values at high amplitude levels. The established models of damping are used to predict the damping in the following three ways : (1) the model is established by part of the data measured from one building and is used to predict the another part of damping values which are always difficult to obtain from field measurements : the values at the high amplitude level. (2) The model is established by the damping data measured from one building and is used to predict the variation curve of damping for another building. And (3) the model is established by the data measured from more than one buildings and is used to predict the variation curve of damping for another building. The prediction results are discussed.

Monitoring of Chemical Processes Using Modified Scale Space Filtering and Functional-Link-Associative Neural Network (개선된 스케일 스페이스 필터링과 함수연결연상 신경망을 이용한 화학공정 감시)

  • Park, Jung-Hwan;Kim, Yoon-Sik;Chang, Tae-Suk;Yoon, En-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1113-1119
    • /
    • 2000
  • To operate a process plant safely and economically, process monitoring is very important. Process monitoring is the task to identify the state of the system from sensor data. Process monitoring includes data acquisition, regulatory control, data reconciliation, fault detection, etc. This research focuses on the data recon-ciliation using scale-space filtering and fault detection using functional-link associative neural networks. Scale-space filtering is a multi-resolution signal analysis method. Scale-space filtering can extract highest frequency factors(noise) effectively. But scale-space filtering has too large calculation costs and end effect problems. This research reduces the calculation cost of scale-space filtering by applying the minimum limit to the gaussian kernel. And the end-effect that occurs at the end of the signal of the scale-space filtering is overcome by using extrapolation related with the clustering change detection method. Nonlinear principal component analysis methods using neural network have been reviewed and the separately expanded functional-link associative neural network is proposed for chemical process monitoring. The separately expanded functional-link associative neural network has better learning capabilities, generalization abilities and short learning time than the exiting-neural networks. Separately expanded functional-link associative neural network can express a statistical model similar to real process by expanding the input data separately. Combining the proposed methods-modified scale-space filtering and fault detection method using the separately expanded functional-link associative neural network-a process monitoring system is proposed in this research. the usefulness of the proposed method is proven by its application a boiler water supply unit.

  • PDF

Black Ice Detection Platform and Its Evaluation using Jetson Nano Devices based on Convolutional Neural Network (CNN)

  • Sun-Kyoung KANG;Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • In this paper, we propose a black ice detection platform framework using Convolutional Neural Networks (CNNs). To overcome black ice problem, we introduce a real-time based early warning platform using CNN-based architecture, and furthermore, in order to enhance the accuracy of black ice detection, we apply a multi-scale dilation convolution feature fusion (MsDC-FF) technique. Then, we establish a specialized experimental platform by using a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Experimental results of a real-time black ice detection platform show the better performance of our proposed network model compared to conventional image segmentation models. Our proposed platform have achieved real-time segmentation of road black ice areas by deploying a road black ice area segmentation network on the edge device Jetson Nano devices. This approach in parallel using multi-scale dilated convolutions with different dilation rates had faster segmentation speeds due to its smaller model parameters. The proposed MsCD-FF Net(2) model had the fastest segmentation speed at 5.53 frame per second (FPS). Thereby encouraging safe driving for motorists and providing decision support for road surface management in the road traffic monitoring department.

Cascade Fusion-Based Multi-Scale Enhancement of Thermal Image (캐스케이드 융합 기반 다중 스케일 열화상 향상 기법)

  • Kyung-Jae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.301-307
    • /
    • 2024
  • This study introduces a novel cascade fusion architecture aimed at enhancing thermal images across various scale conditions. The processing of thermal images at multiple scales has been challenging due to the limitations of existing methods that are designed for specific scales. To overcome these limitations, this paper proposes a unified framework that utilizes cascade feature fusion to effectively learn multi-scale representations. Confidence maps from different image scales are fused in a cascaded manner, enabling scale-invariant learning. The architecture comprises end-to-end trained convolutional neural networks to enhance image quality by reinforcing mutual scale dependencies. Experimental results indicate that the proposed technique outperforms existing methods in multi-scale thermal image enhancement. Performance evaluation results are provided, demonstrating consistent improvements in image quality metrics. The cascade fusion design facilitates robust generalization across scales and efficient learning of cross-scale representations.

Efficient Multi-scalable Network for Single Image Super Resolution

  • Alao, Honnang;Kim, Jin-Sung;Kim, Tae Sung;Lee, Kyujoong
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2021
  • In computer vision, single-image super resolution has been an area of research for a significant period. Traditional techniques involve interpolation-based methods such as Nearest-neighbor, Bilinear, and Bicubic for image restoration. Although implementations of convolutional neural networks have provided outstanding results in recent years, efficiency and single model multi-scalability have been its challenges. Furthermore, previous works haven't placed enough emphasis on real-number scalability. Interpolation-based techniques, however, have no limit in terms of scalability as they are able to upscale images to any desired size. In this paper, we propose a convolutional neural network possessing the advantages of the interpolation-based techniques, which is also efficient, deeming it suitable in practical implementations. It consists of convolutional layers applied on the low-resolution space, post-up-sampling along the end hidden layers, and additional layers on high-resolution space. Up-sampling is applied on a multiple channeled feature map via bicubic interpolation using a single model. Experiments on architectural structure, layer reduction, and real-number scale training are executed with results proving efficient amongst multi-scale learning (including scale multi-path-learning) based models.