• Title/Summary/Keyword: Multi-scale model

Search Result 643, Processing Time 0.03 seconds

Multiscale Stress Analysis of Palladium/Carbon Fiber Composites for the Hydrogen High Pressure Vessel (수소고압저장용기용 팔라듐 첨가 탄소섬유복합재에 대한 멀티스케일 응력해석)

  • Park, Woo Rim;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • The multi-scale analysis is more proper and precise for composite materials because of considering the individual microscopic structure and properties of each material for composite materials. The purpose of this study is to verify the validity of using palladium particles in carbon/fiber composites by multi-scale analysis. The palladium is a material for itself to detect leaking hydrogen by using the property of adsorbing hydrogen. The macroscopic model material properties used in this study are homogeneous material properties from microstructure. Homogenized material properties that are calculated from periodic boundary conditions in the microscopic representative volume element model of each macroscopic analysis model. In this study, three macroscopic models were used : carbon fiber/epoxy, carbon fiber/palladium, palladium/epoxy. As a result, adding palladium to carbon/epoxy composite is not a problem in terms of strength.

Trend-adaptive Anomaly Detection with Multi-Scale PCA in IoT Networks (IoT 네트워크에서 다중 스케일 PCA 를 사용한 트렌드 적응형 이상 탐지)

  • Dang, Thien-Binh;Tran, Manh-Hung;Le, Duc-Tai;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.562-565
    • /
    • 2018
  • A wide range of IoT applications use information collected from networks of sensors for monitoring and controlling purposes. However, the frequent appearance of fault data makes it difficult to extract correct information, thereby sending incorrect commands to actuators that can threaten human privacy and safety. For this reason, it is necessary to have a mechanism to detect fault data collected from sensors. In this paper, we present a trend-adaptive multi-scale principal component analysis (Trend-adaptive MS-PCA) model for data fault detection. The proposed model inherits advantages of Discrete Wavelet Transform (DWT) in capturing time-frequency information and advantages of PCA in extracting correlation among sensors' data. Experimental results on a real dataset show the high effectiveness of the proposed model in data fault detection.

Multi-Shape Retrieval Using Multi Curvature-Scale Space Descriptor (다중 곡률-단계 공간 기술자를 이용한 다중형상 검색)

  • Park, Sang Hyun;Lee, Soo-Chahn;Yun, Il-Dong
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.962-965
    • /
    • 2008
  • 2-D shape descriptors, which are vectors representing characteristics of shapes, enable comparison and classification of shapes and are mainly applied to image and 3-D model retrieval. Existing descriptors have limitations that they only describe shapes of single closed contours or lack in precision, making it difficult to be applied to shapes with multiple contours. Therefore, in this paper, we propose a new shape descriptor called Multi-Curvature-Scale Space that can be applied to shapes with multiple contours. Specifically, we represent the topology of the sub-contours in the multi-contour along with Curvature-Scale Space descriptors to represent the shapes of each sub-contours. Also, by allowing the weight of each component to be controlled when computing the distance between descriptors the weight, we deal with ambiguities in measuring similarity between shapes. Results of various experiments that prove the effectiveness of proposed descriptor are presented.

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law)

  • ;;;Guo, Xun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.101-108
    • /
    • 2003
  • Small-scale models have been frequently used for experimental evaluation of seismic performance because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material. added mass is demanded from a volumetric change and scale factor could be limited due to size of aggregate. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor and equivalent modulus ratio. In this study, compressive strength tests are conducted to analyze equivalent modulus ratio of micro-concrete to normal-concrete. Equivalent modulus ratios are divided into multi phases, which are based on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test. considering equivalent multi-phase similitude law based on seismic damage levels, is developed. In addition, prior to the experiment. it is verified numerically if the algorithm is applicable to the pseudodynamic test.

Eye Localization based on Multi-Scale Gabor Feature Vector Model (다중 스케일 가버 특징 벡터 모델 기반 눈좌표 검출)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Oh, Du-Sik;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.48-57
    • /
    • 2007
  • Eye localization is necessary for face recognition and related application areas. Most of eye localization algorithms reported thus far still need to be improved about precision and computational time for successful applications. In this paper, we propose an improved eye localization method based on multi-scale Gator feature vector models. The proposed method first tries to locate eyes in the downscaled face image by utilizing Gabor Jet similarity between Gabor feature vector at an initial eye coordinates and the eye model bunch of the corresponding scale. The proposed method finally locates eyes in the original input face image after it processes in the same way recursively in each scaled face image by using the eye coordinates localized in the downscaled image as initial eye coordinates. Experiments verify that our proposed method improves the precision rate without causing much computational overhead compared with other eye localization methods reported in the previous researches.

Temperature Control of Ultrasupercritical Once-through Boiler-turbine System Using Multi-input Multi-output Dynamic Matrix Control

  • Moon, Un-Chul;Kim, Woo-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.423-430
    • /
    • 2011
  • Multi-input multi-output (MIMO) dynamic matrix control (DMC) technique is applied to control steam temperatures in a large-scale ultrasupercritical once-through boiler-turbine system. Specifically, four output variables (i.e., outlet temperatures of platen superheater, finish superheater, primary reheater, and finish reheater) are controlled using four input variables (i.e., two spray valves, bypass valve, and damper). The step-response matrix for the MIMO DMC is constructed using the four input and the four output variables. Online optimization is performed for the MIMO DMC using the model predictive control technique. The MIMO DMC controller is implemented in a full-scope power plant simulator with satisfactory performance.

Development of Multi-Ensemble GCMs Based Spatio-Temporal Downscaling Scheme for Short-term Prediction (여름강수량의 단기예측을 위한 Multi-Ensemble GCMs 기반 시공간적 Downscaling 기법 개발)

  • Kwon, Hyun-Han;Min, Young-Mi;Hameed, Saji N.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1142-1146
    • /
    • 2009
  • A rainfall simulation and forecasting technique that can generate daily rainfall sequences conditional on multi-model ensemble GCMs is developed and applied to data in Korea for the major rainy season. The GCM forecasts are provided by APEC climate center. A Weather State Based Downscaling Model (WSDM) is used to map teleconnections from ocean-atmosphere data or key state variables from numerical integrations of Ocean-Atmosphere General Circulation Models to simulate daily sequences at multiple rain gauges. The method presented is general and is applied to the wet season which is JJA(June-July-August) data in Korea. The sequences of weather states identified by the EM algorithm are shown to correspond to dominant synoptic-scale features of rainfall generating mechanisms. Application of the methodology to seasonal rainfall forecasts using empirical teleconnections and GCM derived climate forecast are discussed.

  • PDF

Comparative Study on Illumination Compensation Performance of Retinex model and Illumination-Reflectance model (레티넥스 모델과 조명-반사율 모델의 조명 보상 성능 비교 연구)

  • Chung, Jin-Yun;Yang, Hyun-Seung
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.936-941
    • /
    • 2006
  • To apply object recognition techniques to real environment, illumination compensation method should be developed. As effective illumination compensation model, we focused our attention on Retinex model and illumination-Reflectance model, implemented them, and experimented on their performance. We implemented Retinex model with Single Scale Retinex, Multi-Scale Retinex, and Retinex Neural Network and Multi-Scale Retinex Neural Network, neural network model of Retinex model. Also, we implemented illumination-Reflectance model with reflectance image calculation by calculating an illumination image by low frequency filtering in frequency domain of Discrete Cosine Transform and Wavelet Transform, and Gaussian blurring. We compare their illumination compensation performance to facial images under nine illumination directions. We also compare their performance after post processing using Principal Component Analysis(PCA). As a result, illumination Reflectance model showed better performance and their overall performance was improved when illumination compensated images were post processed by PCA.

Development of the Big-size Statistical Volume Elements (BSVEs) Model for Fiber Reinforced Composite Based on the Mesh Cutting Technique (요소 절단법을 사용한 섬유강화 복합재료의 대규모 통계적 체적 요소 모델 개발)

  • Park, Kook Jin;Shin, SangJoon;Yun, Gunjin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.251-259
    • /
    • 2018
  • In this paper, statistical volume element modeling method was developed for multi-scale progressive failure analysis of fiber reinforced composite materials. Big-size statistical volume elements (BSVEs) was considered to minimize the size effect in the micro-scale, by including as many fibers as possible. For that purpose, a mesh cutting method is suggested and adapted into the fiber model generator that creates finite element domain rapidly. The fiber defect model was also developed based on the experimental distribution of the fiber strength. The size effects from the local load sharing (LLS) are evaluated by increasing the fiber inclusion in the micro-scale model. Finally, continuum damage mechanics (CDM) model to the fiber direction was extracted from numerical analysis on BSVEs. And it was compared with strength prediction from typical representative volume element (RVE) model.

A New Approach of Multi-Scale Simulation for Investigating Nano-Scale Material Deformation Behavior (나노스케일 재료 변형 거동을 위한 새로운 멀티스케일 접근법)

  • Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.43-47
    • /
    • 2009
  • Recently, an approach for nano-scale material deformation has been developed that couples the atomistic and continuum approaches using Finite Element Method (FEM) and Molecular Dynamics (MD). However, this approach still has problems to connect two approaches because of the difference of basic assumptions, continuum and atomistic modeling. To solve this problem, an alternative way is developed that connects the QuasiMolecular Dynamics (QMD) and molecular dynamics. In this paper, we suggest the way to make and validate the MD-QMD coupled model.

  • PDF