• Title/Summary/Keyword: Multi-scale model

Search Result 643, Processing Time 0.024 seconds

Field measurement-based wind-induced response analysis of multi-tower building with tuned mass damper

  • Chen, Xin;Zhang, Zhiqiang;Li, Aiqun;Hu, Liang;Liu, Xianming;Fan, Zhong;Sun, Peng
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.143-159
    • /
    • 2021
  • The 246.8-m-tall Beijing Olympic Tower (BOT) is a new landmark in Beijing City, China. Its unique architectural style with five sub-towers and a large tower crown gives rise to complex dynamic characteristics. Thus, it is wind-sensitive, and a double-stage pendulum tuned mass damper (DPTMD) has been installed for vibration mitigation. In this study, a finite-element analysis of the wind-induced responses of the tower based on full-scale measurement results was performed. First, the structure of the BOT and the full-scale measurement are introduced. According to the measured dynamic characteristics of the BOT, such as the natural frequencies, modal shapes, and damping ratios, an accurate finite-element model (FEM) was established and updated. On the basis of wind measurements, as well as wind-tunnel test results, the wind load on the model was calculated. Then, the wind-induced responses of the BOT with the DPTMD were obtained and compared with the measured responses to assess the numerical wind-induced response analysis method. Finally, the wind-induced serviceability of the BOT was evaluated according to the field measurement results for the wind-induced response and was found to be satisfactory for human comfort.

Life Prediction of Composite Pressure Vessels Using Multi-Scale Approach (멀티 스케일 접근법을 이용한 복합재 압력용기의 수명 예측)

  • Jin, Kyo-Kook;Ha, Sung-Kyu;Kim, Jae-Hyuk;Han, Hoon-Hee;Kim, Seong-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3176-3183
    • /
    • 2010
  • A multi-scale fatigue life prediction methodology of composite pressure vessels subjected to multi-axial loading has been proposed in this paper. The multi-scale approach starts from the constituents, fiber, matrix and interface, leading to predict behavior of ply, laminates and eventually the composite structures. The multi-scale fatigue life prediction methodology is composed of two steps: macro stress analysis and micro mechanics of failure based on fatigue analysis. In the macro stress analysis, multi-axial fatigue loading acting at laminate is determined from finite element analysis of composite pressure vessel, and ply stresses are computed using a classical laminate theory. The micro stresses are calculated in each constituent from ply stresses using a micromechanical model. Three methods are employed in predicting fatigue life of each constituent, i.e. a maximum stress method for fiber, an equivalent stress method for multi-axially loaded matrix, and a critical plane method for the interface. A modified Goodman diagram is used to take into account the generic mean stresses. Damages from each loading cycle are accumulated using Miner's rule. Monte Carlo simulation has been performed to predict the overall fatigue life of a composite pressure vessel considering statistical distribution of material properties of each constituent, fiber volume fraction and manufacturing winding angle.

A Hybrid Approach Based on Multi-Criteria Satisfaction Analysis (MUSA) and a Network Data Envelopment Analysis (NDEA) to Evaluate Efficiency of Customer Services in Bank Branches

  • Khalili-Damghani, Kaveh;Taghavi-Fard, Mohammad;Karbaschi, Kiaras
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.4
    • /
    • pp.347-371
    • /
    • 2015
  • A hybrid procedure based on multi-Criteria Satisfaction Analysis (MUSA) and a Network Data Envelopment Analysis (NDEA) is proposed to evaluate the relative efficiency of customer services in bank branches. First, a three-stage process including sub-processes such as customer expectations, customer satisfaction, and customer loyalty, is defined to model the banking customer services. Then, fulfillment of customer expectations, customer loyalty level, and the customer satisfaction degree are measured and quantified through a multi-dimensional questionnaire based on customers' perceptions analysis and MUSA method, respectively. The customer services scores and the other criteria such as mean of employee evaluation score, operation costs, assets, deposits, loans, number of accounts are considered in network three-stage DEA model. The proposed NDEA model is formed based on multipliers perspective, output-oriented, and constant return to scale assumptions. The proposed NDEA model quantifies and assesses the total efficiency of main process and assigns the efficiency to customer expectations, customer satisfactions, and customer loyalties sub-processes in bank branches. The whole procedure is applied on 30 bank branches in IRAN. The proposed approach can be used in other organizations such as airports, airline agencies, urban transportation systems, railway organizations, chain stores, chain restaurants, public libraries, and entertainment centers.

Multi-body dynamics model for spent nuclear fuel transportation system under normal transport test conditions

  • Seongji Han;Gil-Eon Jeong;Hyeonbeen Lee;Woo-Seok Choi;Jin-Gyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4125-4133
    • /
    • 2023
  • The transportation of spent nuclear fuel is an important process that involves road and sea transport from an interim storage facility to storage and final disposal sites. As spent nuclear fuel poses a significant risk, carefully evaluating its vibration and shock characteristics under normal transport conditions is essential. In this regard, full-scale multi-modal transport tests (MMTT) have been conducted domestically and internationally. In this paper, we discuss the process of developing a multi-body dynamics (MBD) model to analytically simulate conditions that cannot be considered in tests. The MBD model is based on the KORAD-21 transportation system was validated using the Korean MMTT results from 2020 to 2021. This paper summarizes the details of the development and verification of the MBD model for the KORAD-21 transportation system under normal transport test conditions. This approach can be applicable to various transportation scenarios and systems, and the results of this study will help to ensure that nuclear fuel transportation is conducted safely and effectively.

Modelling of multidimensional effects in thermal-hydraulic system codes under asymmetric flow conditions - Simulation of ROCOM tests 1.1 and 2.1 with ATHLET 3D-Module

  • Pescador, E. Diaz;Schafer, F.;Kliem, S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3182-3195
    • /
    • 2021
  • The implementation and validation of multi-dimensional (multi-D) features in thermal-hydraulic system codes aims to extend the application of these codes towards multi-scale simulations. The main goal is the simulation of large-scale three-dimensional effects inside large volumes such as piping or vessel. This novel approach becomes especially relevant during the simulation of accidents with strongly asymmetric flow conditions entailing density gradients. Under such conditions, coolant mixing is a key phenomenon on the eventual variation of the coolant temperature and/or boron concentration at the core inlet and on the extent of a local re-criticality based on the reactivity feedback effects. This approach presents several advantages compared to CFD calculations, mainly concerning the model size and computational efforts. However, the range of applicability and accuracy of the newly implemented physical models at this point is still limited and needs to be further extended. This paper aims at contributing to the validation of the multi-D features of the system code ATHLET based on the simulation of the Tests 1.1 and 2.1, conducted at the test facility ROCOM. Overall, the multi-D features of ATHLET predict reasonably well the evolution from both experiments, despite an observed overprediction of coolant mixing at the vessel during both experiments.

Mesoscale modeling of the temperature-dependent viscoelastic behavior of a Bitumen-Bound Gravels

  • Sow, Libasse;Bernard, Fabrice;Kamali-Bernard, Siham;Kebe, Cheikh Mouhamed Fadel
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.509-524
    • /
    • 2018
  • A hierarchical multi-scale modeling strategy devoted to the study of a Bitumen-Bound Gravel (BBG) is presented in this paper. More precisely, the paper investigates the temperature-dependent linear viscoelastic of the material when submitted to low deformations levels and moderate number of cycles. In such a hierarchical approach, 3D digital Representative Elementary Volumes are built and the outcomes at a scale (here, the sub-mesoscale) are used as input data at the next higher scale (here, the mesoscale). The viscoelastic behavior of the bituminous phases at each scale is taken into account by means of a generalized Maxwell model: the bulk part of the behavior is separated from the deviatoric one and bulk and shear moduli are expanded into Prony series. Furthermore, the viscoelastic phases are considered to be thermorheologically simple: time and temperature are not independent. This behavior is reproduced by the Williams-Landel-Ferry law. By means of the FE simulations of stress relaxation tests, the parameters of the various features of this temperature-dependent viscoelastic behavior are identified.

Effective electromechanical coupling coefficient of adaptive structures with integrated multi-functional piezoelectric structural fiber composites

  • Koutsawa, Yao;Tiem, Sonnou;Giunta, Gaetano;Belouettar, Salim
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.501-515
    • /
    • 2014
  • This paper presents a linear computational homogenization framework to evaluate the effective (or generalized) electromechanical coupling coefficient (EMCC) of adaptive structures with piezoelectric structural fiber (PSF) composite elements. The PSF consists of a silicon carbide (SiC) or carbon core fiber as reinforcement to a fragile piezo-ceramic shell. For the micro-scale analysis, a micromechanics model based on the variational asymptotic method for unit cell homogenization (VAMUCH) is used to evaluate the overall electromechanical properties of the PSF composites. At the macro-scale, a finite element (FE) analysis with the commercial FE code ABAQUS is performed to evaluate the effective EMCC for structures with the PSF composite patches. The EMCC is postprocessed from free-vibrations analysis under short-circuit (SC) and open-circuit (OC) electrodes of the patches. This linear two-scale computational framework may be useful for the optimal design of active structure multi-functional composites which can be used for multi-functional applications such as structural health monitoring, power harvest, vibration sensing and control, damping, and shape control through anisotropic actuation.

Computational analysis of heart mechanics using a cell-autonomic nerve control-hemodynamic system coupled model (세포-신경계-혈류역학 시스템 통합모델에 의한 심장역학 분석)

  • Jun, Hyung-Min;Shim, Eun-Bo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2941-2946
    • /
    • 2007
  • A model of the cardiovascular system coupling cell, hemodynamics and autonomic nervecontrol function is proposed for analyzing heart mechanics. We developed a comprehensive cardiovascular model with multi-physics and multi-scale characteristics that simulates the physiological events from membrane excitation of a cardiac cell to contraction of the human heart and systemic blood circulation and ultimately to autonomic nerve control. Using this model, we delineatedthe cellular mechanism of heart contractility mediated by nerve control function. To verify the integrated method, we simulated a 10% hemorrhage, which involves cardiac cell mechanics, circulatory hemodynamics, and nerve control function. The computed and experimental results were compared. Using this methodology, the state of cardiac contractility, influenced by diverse properties such as the afterload and nerve control systems, is easily assessed in an integrated manner.

  • PDF

A Study of Developing Variable-Scale Maps for Management of Efficient Road Network (효율적인 네트워크 데이터 관리를 위한 가변-축척 지도 제작 방안)

  • Joo, Yong Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.143-150
    • /
    • 2013
  • The purpose of this study is to suggest the methodology to develop variable-scale network model, which is able to induce large-scale road network in detailed level corresponding to small-scale linear objects with various abstraction in higher level. For this purpose, the definition of terms, the benefits and the specific procedures related with a variable-scale model were examined. Second, representation level and the components of layer to design the variable-scale map were presented. In addition, rule-based data generating method and indexing structure for higher LoD were defined. Finally, the implementation and verification of the model were performed to road network in study area (Jeju -do) so that the proposed algorithm can be practical. That is, generated variable scale road network were saved and managed in spatial database (Oracle Spatial) and performance analysis were carried out for the effectiveness and feasibility of the model.

Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis

  • Asghar, Sehar;Naeem, Muhammad N.;Hussain, Muzamal;Taj, Muhammad;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.133-144
    • /
    • 2020
  • This paper aims to study vibration characteristics of chiral and zigzag double-walled carbon nanotubes entrenched on Donnell shell model. The Eringen's nonlocal elastic equations are being combined with Donnell shell theory to observe small scale response. Wave propagation is proposed technique to establish field equations of model subjected to four distinct end supports. A nonlocal model has been formulated to explore the frequency spectrum of both chiral and zigzag double-walled CNTs along with diversity of indices and nonlocal parameter. The significance of scale effect in relevance of length-to-diameter and thickness- to- radius ratios are discussed and displayed in detail. The numerical solution based on this nonlocal Donnell shell model can be further used to predict other frequency phenomena of double-walled and multi-walled CNTs.