• Title/Summary/Keyword: Multi-scale Information

Search Result 649, Processing Time 0.028 seconds

Multi-scale Crack Detection Using Scaling (스케일링을 이용한 다중 스케일 균열 검출)

  • Kim, Young-Ro;Oh, Tae-Myung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.194-200
    • /
    • 2013
  • In this paper, we propose a multi-scale crack detection method using scaling. It is based on morphology algorithm, crack features, and scaling. We use a morphology operator which extracts patterns of crack. It segments cracks and background using opening and closing operations. Morphology based segmentation is better than existing integration methods using subtraction in detecting a crack it has small width. However, morphology methods using only one structure element could detect only fixed width crack. Thus, we use a scaling method. We use bilinear interpolation for scaling. Our method calculates values of properties such as the number of pixels and the maximum length of the segmented region. We decide whether the segmented region belongs to cracks according to those data. Experimental results show that our proposed multi-scale crack detection method has better results than those of existing detection methods.

Robust Object Tracking for Scale Changes (스케일에 강건한 물체 추적 기법)

  • Cheon, Gi-Hong;Kang, Hang-Bong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.194-203
    • /
    • 2008
  • Though conventional video surveillance systems such as CCTV depended on operators, recently developed intelligent surveillance systems no longer needed operators. However, these new intelligent surveillance systems have their own problems such as Occlusion, changing scale of target object, and affine. This paper handled information damage caused by changing the scale of the target object among other objects. Due to the change of the scale, the inaccurate information of target can be obtained when we update the background information. To handle this problem, we introduce a solution for information damage caused by problem of changing scale of target object located among other objects. Specifically, we suggest multi-stage sampling particle filter based advanced MSER for object tracking system. Through this method, the problem caused by changing scale of target can be avoided.

Multi-scale Cluster Hierarchy for Non-stationary Functional Signals of Mutual Fund Returns (Mutual Fund 수익률의 비정상 함수형 시그널을 위한 다해상도 클러스터 계층구조)

  • Kim, Dae-Lyong;Jung, Uk
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.57-72
    • /
    • 2007
  • Many Applications of scientific research have coupled with functional data signal clustering techniques to discover novel characteristics that can be used for the diagnoses of several issues. In this article we present an interpretable multi-scale cluster hierarchy framework for clustering functional data using its multi-aspect frequency information. The suggested method focuses on how to effectively select transformed features/variables in unsupervised manner so that finally reduce the data dimension and achieve the multi-purposed clustering. Specially, we apply our suggested method to mutual fund returns and make superior-performing funds group based on different aspects such as global patterns, seasonal variations, levels of noise, and their combinations. To promise our method producing a quality cluster hierarchy, we give some empirical results under the simulation study and a set of real life data. This research will contribute to financial market analysis and flexibly fit to other research fields with clustering purposes.

Multi-Shape Retrieval Using Multi Curvature-Scale Space Descriptor (다중 곡률-단계 공간 기술자를 이용한 다중형상 검색)

  • Park, Sang Hyun;Lee, Soo-Chahn;Yun, Il-Dong
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.962-965
    • /
    • 2008
  • 2-D shape descriptors, which are vectors representing characteristics of shapes, enable comparison and classification of shapes and are mainly applied to image and 3-D model retrieval. Existing descriptors have limitations that they only describe shapes of single closed contours or lack in precision, making it difficult to be applied to shapes with multiple contours. Therefore, in this paper, we propose a new shape descriptor called Multi-Curvature-Scale Space that can be applied to shapes with multiple contours. Specifically, we represent the topology of the sub-contours in the multi-contour along with Curvature-Scale Space descriptors to represent the shapes of each sub-contours. Also, by allowing the weight of each component to be controlled when computing the distance between descriptors the weight, we deal with ambiguities in measuring similarity between shapes. Results of various experiments that prove the effectiveness of proposed descriptor are presented.

Trend-adaptive Anomaly Detection with Multi-Scale PCA in IoT Networks (IoT 네트워크에서 다중 스케일 PCA 를 사용한 트렌드 적응형 이상 탐지)

  • Dang, Thien-Binh;Tran, Manh-Hung;Le, Duc-Tai;Choo, Hyunseung
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.562-565
    • /
    • 2018
  • A wide range of IoT applications use information collected from networks of sensors for monitoring and controlling purposes. However, the frequent appearance of fault data makes it difficult to extract correct information, thereby sending incorrect commands to actuators that can threaten human privacy and safety. For this reason, it is necessary to have a mechanism to detect fault data collected from sensors. In this paper, we present a trend-adaptive multi-scale principal component analysis (Trend-adaptive MS-PCA) model for data fault detection. The proposed model inherits advantages of Discrete Wavelet Transform (DWT) in capturing time-frequency information and advantages of PCA in extracting correlation among sensors' data. Experimental results on a real dataset show the high effectiveness of the proposed model in data fault detection.

An Approach to Improve the Contrast of Multi Scale Fusion Methods

  • Hwang, Tae Hun;Kim, Jin Heon
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.87-90
    • /
    • 2018
  • Various approaches have been proposed to convert low dynamic range (LDR) to high dynamic range (HDR). Of these approaches, the Multi Scale Fusion (MSF) algorithm based on Laplacian pyramid decomposition is used in many applications and demonstrates its usefulness. However, the pyramid fusion technique has no means for controlling the luminance component because the total number of pixels decreases as the pyramid rises to the upper layer. In this paper, we extract the reflection light of the image based on the Retinex theory and generate the weight map by adjusting the reflection component. This weighting map is applied to achieve an MSF-like effect during image fusion and provides an opportunity to control the brightness components. Experimental results show that the proposed method maintains the total number of pixels and exhibits similar effects to the conventional method.

Multi-scale U-SegNet architecture with cascaded dilated convolutions for brain MRI Segmentation

  • Dayananda, Chaitra;Lee, Bumshik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.25-28
    • /
    • 2020
  • Automatic segmentation of brain tissues such as WM, GM, and CSF from brain MRI scans is helpful for the diagnosis of many neurological disorders. Accurate segmentation of these brain structures is a very challenging task due to low tissue contrast, bias filed, and partial volume effects. With the aim to improve brain MRI segmentation accuracy, we propose an end-to-end convolutional based U-SegNet architecture designed with multi-scale kernels, which includes cascaded dilated convolutions for the task of brain MRI segmentation. The multi-scale convolution kernels are designed to extract abundant semantic features and capture context information at different scales. Further, the cascaded dilated convolution scheme helps to alleviate the vanishing gradient problem in the proposed model. Experimental outcomes indicate that the proposed architecture is superior to the traditional deep-learning methods such as Segnet, U-net, and U-Segnet and achieves high performance with an average DSC of 93% and 86% of JI value for brain MRI segmentation.

  • PDF

Multiscale Implicit Functions for Unified Data Representation

  • Yun, Seong-Min;Park, Sang-Hun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.12
    • /
    • pp.2374-2391
    • /
    • 2011
  • A variety of reconstruction methods has been developed to convert a set of scattered points generated from real models into explicit forms, such as polygonal meshes, parametric or implicit surfaces. In this paper, we present a method to construct multi-scale implicit surfaces from scattered points using multiscale kernels based on kernel and multi-resolution analysis theories. Our approach differs from other methods in that multi-scale reconstruction can be done without additional manipulation on input data, calculated functions support level of detail representation, and it can be naturally expanded for n-dimensional data. The method also works well with point-sets that are noisy or not uniformly distributed. We show features and performances of the proposed method via experimental results for various data sets.

Texture Image Retrieval Using DTCWT-SVD and Local Binary Pattern Features

  • Jiang, Dayou;Kim, Jongweon
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1628-1639
    • /
    • 2017
  • The combination texture feature extraction approach for texture image retrieval is proposed in this paper. Two kinds of low level texture features were combined in the approach. One of them was extracted from singular value decomposition (SVD) based dual-tree complex wavelet transform (DTCWT) coefficients, and the other one was extracted from multi-scale local binary patterns (LBPs). The fusion features of SVD based multi-directional wavelet features and multi-scale LBP features have short dimensions of feature vector. The comparing experiments are conducted on Brodatz and Vistex datasets. According to the experimental results, the proposed method has a relatively better performance in aspect of retrieval accuracy and time complexity upon the existing methods.

DRF-based Object Detection Using the Object Adaptive Patch in the Satellite Imagery

  • Choi, Hyoung-Min;Lee, Kyoung-Mu;Lee, Sang-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.85-88
    • /
    • 2009
  • In this paper, we propose a DRF-based object detection method using the object adaptive patch in the satellite imagery. It is a Discriminative Random Fields (DRF) based work, so the detection is done by labeling to the possible patches in the image. For the feature information of each patch, we use the multi-scale and object adaptive patch and its texton histogram, instead of using the single scale and fixed grid patch. So, we can include contextual layout of texture information around the object. To make object adaptive patch, we use "superpixel lattice" scheme. As a result, each group of labeled patches represents the object or object's presence region. In the experiment, we compare the detection result with a fixed grid scheme and shows our result is more close to the object shape.

  • PDF