• Title/Summary/Keyword: Multi-scale

Search Result 2,263, Processing Time 0.032 seconds

The Consistency Assessment of Topological Relationships For a Collapse Operator in Multi-Scale Spatial Databases (다중축척 공간 데이터베이스의 축소연산자를 위한 위상관계 일관성 평가)

  • Kang Hae-Kyong;Li Ki-Joune
    • The KIPS Transactions:PartD
    • /
    • v.12D no.6 s.102
    • /
    • pp.837-848
    • /
    • 2005
  • A multi-scale database is a set of spatial database, covering same geographic area with different scales and it can be derived from pre-existing databases. In the derivation processes of a new multi-scale spatial database, the geometries and topological relations on the source database can be transformed and the transformation can be the cause of the lack of integrity Therefore, it is necessary to assess the transformation whether it is consistent or not after the derivation process of a new multi-scale database. Thus, we propose assessment methods for the topological consistency between a source database and a derived multi-scale database in this paper. In particular, we focus on the case that 2-dimensional objects are collapsed to 1-dimensional ones in the derivation process of a multi-scale database. We also describe implementation of the assessment methods and show the results of the implementation with experimental data.

Data Update on Multi-Scale Databases (다중축척 공간 데이터베이스의 데이터 갱신)

  • Kwon O-Je;Kang Hae-Kyong;Li Ki-Joune
    • Spatial Information Research
    • /
    • v.12 no.3
    • /
    • pp.239-249
    • /
    • 2004
  • This paper discusses on the update problem of multi-scale databases when the multi-scale databases, which is several spatial databases covering the same geographic area with different scales, are derived from an original one. Although the integrity between original and derived multi-scale databases should be maintained, most of update mechanisms do not 6respect it since the update mechanisms have assumed that the update of source objects propagates to objects directly derived from the source. In order to maintain the integrity of multi-scale databases during updates, we must propagate updates of sources to objects derived from both the updated source objects and other related objects. It is an important functional requirement of multi-scale database systems, which has not been supported by existing spatial database systems. In this paper, we propose a set of rules and algorithms for the update propagation and show a prototype developed on ArcGIS of ESRI. Our update mechanism provides with not only the consistency between multi-scale databases but also incremental updates.

  • PDF

Pose Estimation with Binarized Multi-Scale Module

  • Choi, Yong-Gyun;Lee, Sukho
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.95-100
    • /
    • 2018
  • In this paper, we propose a binarized multi-scale module to accelerate the speed of the pose estimating deep neural network. Recently, deep learning is also used for fine-tuned tasks such as pose estimation. One of the best performing pose estimation methods is based on the usage of two neural networks where one computes the heat maps of the body parts and the other computes the part affinity fields between the body parts. However, the convolution filtering with a large kernel filter takes much time in this model. To accelerate the speed in this model, we propose to change the large kernel filters with binarized multi-scale modules. The large receptive field is captured by the multi-scale structure which also prevents the dropdown of the accuracy in the binarized module. The computation cost and number of parameters becomes small which results in increased speed performance.

Viscoplasticity model stochastic parameter identification: Multi-scale approach and Bayesian inference

  • Nguyen, Cong-Uy;Hoang, Truong-Vinh;Hadzalic, Emina;Dobrilla, Simona;Matthies, Hermann G.;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.411-438
    • /
    • 2022
  • In this paper, we present the parameter identification for inelastic and multi-scale problems. First, the theoretical background of several fundamental methods used in the upscaling process is reviewed. Several key definitions including random field, Bayesian theorem, Polynomial chaos expansion (PCE), and Gauss-Markov-Kalman filter are briefly summarized. An illustrative example is given to assimilate fracture energy in a simple inelastic problem with linear hardening and softening phases. Second, the parameter identification using the Gauss-Markov-Kalman filter is employed for a multi-scale problem to identify bulk and shear moduli and other material properties in a macro-scale with the data from a micro-scale as quantities of interest (QoI). The problem can also be viewed as upscaling homogenization.

Study on Multi-scale Unit Commitment Optimization in the Wind-Coal Intensive Power System

  • Ye, Xi;Qiao, Ying;Lu, Zongxiang;Min, Yong;Wang, Ningbo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1596-1604
    • /
    • 2013
  • Coordinating operation between large-scale wind power and thermal units in multiple time scale is an important problem to keep power balance, especially for the power grids mainly made up of large coal-fired units. The paper proposes a novel operation mode of multi-scale unit commitment (abbr. UC) that includes mid-term UC and day-ahead UC, which can take full advantage of insufficient flexibility and improve wind power accommodation. First, we introduce the concepts of multi-scale UC and then illustrate the benefits of introducing mid-term UC to the wind-coal intensive grid. The paper then formulates the mid-term UC model, proposes operation performance indices and validates the optimal operation mode by simulation cases. Compared with day-ahead UC only, the multi-scale UC mode could reduce the total generation cost and improve the wind power net benefit by decreasing the coal-fired units' on/off operation. The simulation results also show that the maximum total generation benefit should be pursued rather than the wind power utilization rate in wind-coal intensive system.

FROM THE DIRECT NUMERICAL SIMULATION TO SYSTEM CODES - PERSPECTIVE FOR THE MULTI-SCALE ANALYSIS OF LWR THERMALHYDRAULICS

  • Bestion, D.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.608-619
    • /
    • 2010
  • A multi-scale analysis of water-cooled reactor thermalhydraulics can be used to take advantage of increased computer power and improved simulation tools, including Direct Numerical Simulation (DNS), Computational Fluid Dynamics (CFD) (in both open and porous mediums), and system thermalhydraulic codes. This paper presents a general strategy for this procedure for various thermalhydraulic scales. A short state of the art is given for each scale, and the role of the scale in the overall multi-scale analysis process is defined. System thermalhydraulic codes will remain a privileged tool for many investigations related to safety. CFD in porous medium is already being frequently used for core thermalhydraulics, either in 3D modules of system codes or in component codes. CFD in open medium allows zooming on some reactor components in specific situations, and may be coupled to the system and component scales. Various modeling approaches exist in the domain from DNS to CFD which may be used to improve the understanding of flow processes, and as a basis for developing more physically based models for macroscopic tools. A few examples are given to illustrate the multi-scale approach. Perspectives for the future are drawn from the present state of the art and directions for future research and development are given.

EDMFEN: Edge detection-based multi-scale feature enhancement Network for low-light image enhancement

  • Canlin Li;Shun Song;Pengcheng Gao;Wei Huang;Lihua Bi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.980-997
    • /
    • 2024
  • To improve the brightness of images and reveal hidden information in dark areas is the main objective of low-light image enhancement (LLIE). LLIE methods based on deep learning show good performance. However, there are some limitations to these methods, such as the complex network model requires highly configurable environments, and deficient enhancement of edge details leads to blurring of the target content. Single-scale feature extraction results in the insufficient recovery of the hidden content of the enhanced images. This paper proposed an edge detection-based multi-scale feature enhancement network for LLIE (EDMFEN). To reduce the loss of edge details in the enhanced images, an edge extraction module consisting of a Sobel operator is introduced to obtain edge information by computing gradients of images. In addition, a multi-scale feature enhancement module (MSFEM) consisting of multi-scale feature extraction block (MSFEB) and a spatial attention mechanism is proposed to thoroughly recover the hidden content of the enhanced images and obtain richer features. Since the fused features may contain some useless information, the MSFEB is introduced so as to obtain the image features with different perceptual fields. To use the multi-scale features more effectively, a spatial attention mechanism module is used to retain the key features and improve the model performance after fusing multi-scale features. Experimental results on two datasets and five baseline datasets show that EDMFEN has good performance when compared with the stateof-the-art LLIE methods.

Multi-scale Image Segmentation Using MSER and its Application (MSER을 이용한 다중 스케일 영상 분할과 응용)

  • Lee, Jin-Seon;Oh, Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.3
    • /
    • pp.11-21
    • /
    • 2014
  • Multi-scale image segmentation is important in many applications such as image stylization and medical diagnosis. This paper proposes a novel segmentation algorithm based on MSER(maximally stable extremal region) which captures multi-scale structure and is stable and efficient. The algorithm collects MSERs and then partitions the image plane by redrawing MSERs in specific order. To denoise and smooth the region boundaries, hierarchical morphological operations are developed. To illustrate effectiveness of the algorithm's multi-scale structure, effects of various types of LOD control are shown for image stylization. The proposed technique achieves this without time-consuming multi-level Gaussian smoothing. The comparisons of segmentation quality and timing efficiency with mean shift-based Edison system are presented.

Transient full core analysis of PWR with multi-scale and multi-physics approach

  • Jae Ryong Lee;Han Young Yoon;Ju Yeop Park
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.980-992
    • /
    • 2024
  • Steam line break accident (SLB) in the nuclear reactor is one of the representative Non-LOCA accidents in which thermal-hydraulics and neutron kinetics are strongly coupled each other. Thus, the multi-scale and multi-physics approach is applied in this study in order to examine a realistic safety margin. An entire reactor coolant system is modelled by system scale node, whereas sub-channel scale resolution is applied for the region of interest such as the reactor core. Fuel performance code is extended to consider full core pin-wise fuel behaviour. The MARU platform is developed for easy integration of the codes to be coupled. An initial stage of the steam line break accident is simulated on the MARU platform. As cold coolant is injected from the cold leg into the reactor pressure vessel, the power increases due to the moderator feedback. Three-dimensional coolant and fuel behaviour are qualitatively visualized for easy comprehension. Moreover, quantitative investigation is added by focusing on the enhancement of safety margin by means of comparing the minimum departure from nucleate boiling ratio (MDNBR). Three factors contributing to the increase of the MDNBR are proposed: Various geometric parameters, realistic power distribution by neutron kinetics code, Radial coolant mixing including sub-channel physics model.