• Title/Summary/Keyword: Multi-resonance Antenna

Search Result 40, Processing Time 0.02 seconds

A Wide-band Multi-layer Antenna Design using Double Resonance (이중공진을 사용한 적층기판용 광대역 안테나 설계)

  • Lee, Kook-Joo;Zhang, Mei-Shan;Lee, Jung-Aun;Han, Myeong-Woo;Kim, Moon-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.431-434
    • /
    • 2011
  • In this paper, bandwidth enhanced design of dielectric resonator antenna fabricated in multi-layer substrate is introduced. The proposed dielectric resonator antenna is operating with fundamental TE101 mode and higher-order TM111 mode. Each resonance frequency is dependent on resonator dimensions. As increasing the height of radiating aperture, the higher-order TM111 mode resonance frequency approach the fundamental TE101 mode resonance frequency and the antenna bandwidth increase by double resonance. Three different aperture height size antennas that operated at 7GHz are fabricated in FR4 multi-layer substrate. Measured 10 dB matching bandwidth is 8 percent for single resonace antenna and 18 percent for double resonance antenna.

A Novel Compact CPW-fed Antenna with Multi-resonance Mode

  • Choi, Hyo-Sub;Ko, Jae-Jin;Lee, Chul-Dong
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.635-639
    • /
    • 2010
  • A multi-resonance antenna for wireless communications is reported. By using double inverted-L strips, the antenna demonstrated compact size (15 mm ${\times}$ 14 mm) including the ground, multi-band operation for IEEE 802.11 a/b/g/p applications, and wide bandwidth of 1.7 GHz at 5 GHz band. Good radiation features of omni-directional patterns and 1.98 and 2.29 dBi peak antenna gains for the lower and upper bands, respectively, have been achieved.

Mode Identification in the Design of Wideband Cylindrical Monopole Antenna

  • Chun, Joong-Chang;Kim, Sang-Youl;Jeung, Deuk-Soo
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.263-267
    • /
    • 2009
  • Cylindrical monopole antenna is one of most promising candidates for multi-band applications such as PCS, WLAN, DMB, and UWB wireless services. In this research, we demonstrate that there exist two types of current distributions according to the exciting frequency in a double band cylindrical monopole antenna, in which double resonance is achieved by adjusting the coupling structure of the antenna base. The operating modes of current distributions are identified from CST software simulations, the standing wave mode in a lower band and the traveling wave mode in a higher band. Also it is noticed that the mode behavior is quite similar to a helical antenna, a standing-wave (resonance) mode and a traveling-wave (non-resonance) mode according to the electrical dimensions of antenna. The effective ranges for operating modes and design formulas of the double band antenna are derived from simulation and measured results.

Fractal Microstrip patch Antenna Design and Fabrication for WLAN/WiMax Applications (WLAN/WiMax용 프랙탈 마이크로스트립 패치 안테나설계 및 제작)

  • Kim, Kab-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1008-1014
    • /
    • 2011
  • In this paper, multi-band fractal microstrip patch antenna which is possible for WLAN band and WiMax band is designed and made. For multi-resonance of developed antenna, resonance frequency, impedance matching, polarity and reflection pattern can mad perfectly, then to make satisfied multi-independent frequency three kind of half circle fractal patch is inserted. In the situation continuously happening half circle in designed structure, antennas one of half-circle band is shown.

Miniaturized Broadband ENG ZOR Antenna Using a High Permeability Substrate

  • Ko, Seung-Tae;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.201-206
    • /
    • 2011
  • This paper presents a miniaturized epsilon negative (ENG) zeroth-order resonance (ZOR) patch antenna with an improved bandwidth. The miniaturization and the broad bandwidth of the ENG ZOR patch antenna are achieved by using a meandered via and a high permeability substrate instead of a straight via and a dielectric substrate. The use of a meandered via allows miniaturization of the ENG ZOR patch antenna without narrowing the bandwidth. The use of a high permeability substrate allows further miniaturization of the ENG ZOR patch antenna and improvement of the bandwidth. A high permeability substrate consisting of a multi-layered substrate is designed to have a small material loss. The antenna (kr=0.32) has a 10 dB fractional bandwidth of ~1 %, which is 1.74 times as broad as that of an antenna with a dielectric substrate.

CPW-Fed Arbitrary Frequency-Switchable Antenna Using CRLH Transmission Line

  • Lim, Inseop;Lim, Sungjoon
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.151-154
    • /
    • 2014
  • A novel frequency-switchable antenna that uses PIN diodes and a composite right- and left-handed transmission line (CRLH TL) is proposed. The CRLH TL provides multi-order resonance, including a zeroth-order resonance (ZOR), and its shunt stub determines the ZOR frequency. Thus, the resonant frequency is arbitrarily chosen by lumped chip inductors on the shunt stub. Two prototypes are designed using different chip inductors while maintaining the antenna geometries. Antenna #1 can switch the resonant frequency from 1.8 GHz to 2.3 GHz. Antenna #2 can switch its resonance from 0.9 GHz to 2.3 GHz.

A Unit-Cell Varying Pattern Reconfigurable Zeroth-order Resonance Antenna

  • Hyeon-Cheol Ki
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.1-6
    • /
    • 2024
  • Reconfiguration and miniaturization of antennas have become key attributes in modern wireless communication systems. Reconfiguration of radiation pattern can alleviate the problems encountered in modern wireless communication systems such as multi-path problems. Physical limitation of miniaturization also can be overcome by using a zeroth-order resonance (ZOR) antenna based on metamaterial. In order to achieve reconfiguration and miniaturization of antennas at the same time, we propose a new pattern reconfigurable zeroth-order resonance (ZOR) antenna that reconfigures the radiation patterns by varying the position and the number of unit cells comprising the antenna. The antenna is fabricated in an equilateral triangular shaped symmetrical structure to increase pattern variety. This structure can easily provide eight different radiation patterns (two omnidirectional and six monopole like patterns).

Design of a Size-reduced RFID Dual-UHF-Band Reader Antenna (RFID 이중 UHF 대역 인식 시스템용 안테나 소형화 설계)

  • Kahng, Sungtek;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1719-1724
    • /
    • 2013
  • In this paper, a size-reduction technique is presented for the RFID reader antenna working at two UHF bands. To tackle the problem of size increase in multi-band applications, two resonance paths are made to occur in one geometry with a single feed. While one resonance path is combined with the other, the entire geometry is determined to guarantee the resonance at the target frequencies through the dual-band input impedance matching. The antenna performance is predicted by the full-wave simulation, and the design method is verified by observing the good agreement between the simulated and measured results. At the two frequencies, the satisfactory return loss as well as the antenna efficiency and peak gain of the far-field pattern is obtained.

Modified Slot-Loaded Multi-Band Microstrip Patch Antenna

  • Cho, Man-Shik;Kim, Il-Kwon;Cho, Han-Back;Yook, Jong-Gwan;Park, Han-Kyu
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2003
  • In this paper, a triple-band planar antenna is proposed for the application to miniaturized automobile safety devices operating at X band(10.5 ㎓), K band(24.15 ㎓), and Ka band(34.3 ㎓). The frequency ratio between the resonant frequencies of this antenna can be adjusted from 1.99 to 2.23 for both X band and K band by varying its slit length. Parasitic elements are added on the modified slot loaded antenna to obtain the third resonance. From numerical as well as experimental results, it has been confirmed that this type of antenna is appropriate for planar multi-band antenna systems.

Multi-Band Internal Chip Antenna Using Multi-Layer Substrate for Mobile Handset (Multi-Layer 구조를 사용한 다중 대역 내장형 칩 안테나)

  • Cho, Sang-Hyeok;Cho, Il-Hoon;Lee, In-Young;Pyo, Seong-Min;Baik, Jung-Woo;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.778-784
    • /
    • 2008
  • In this paper, a chip antenna using multi-layer configuration for multi-band operation, such as GSM, DCS, pcs, WCDMA, and Mobile WiMAX for 2.3 GHz is proposed. This proposed antenna is a PIFA structure with multi-layer configuration fabricated on R04003 substrate(${\varepsilon}_r=3.4$) and its size is $22{\times}5.5{\times}4.0\;mm^3$. Multi-layer structure can effectively reduce the size of an antenna from a reuse of air-space and can achieve broad bandwidth due to decrement of parallel capacitances from the insertion air-gap to the middle layer. The proposed antenna has a broadband operation by the high order resonance modes and the resonance at the top layer. The measured bandwidths with over 45 % radiation efficiency are 80 MHz($880{\sim}960\;MHz$) at the lower band and 690 MHz($1,710{\sim}2,400\;MHz$) at the higher band.