• Title/Summary/Keyword: Multi-resonance

Search Result 418, Processing Time 0.035 seconds

Sensitivity Analysis of Anti-resonance Frequency for Vibration Test Control of a Fixture

  • Jeong, Weui-Bong;Yoo, Wan-Suk;Kim, Jun-Yeop
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1732-1738
    • /
    • 2003
  • The test specimen in environmental vibration test is connected to the fixture through several attachment points. The forces generated by the shaker must be transmitted equally to all attachment points. The forces transmitted to attachment points, however, are different because of the flexural vibration of the fixture. The variations of the transmitted force cause the under-test, especially at anti-resonance frequencies, in vibration test control. Anti-resonance frequencies at the attachment points of the fixture must be same in order to avoid the under-test in vibration test control. The structural modification of the fixture is needed so that anti-resonance frequencies at attachment points have the same value. In this paper, the method to calculate the anti-resonance frequencies and those sensitivities is presented. This sensitivity analysis is applied to the structural modification of the fixture excited at multi-points by the shaker. The antiresonance frequencies at the attachment points of the fixture can have the same value after structural modification, and the under-test in the vibration test control can be removed. Several computer simulations show that the proposed method can remove the under-tests, which are not removed in conventional vibration test control.

Considerations on the Factors Reducing the Sound Transmission Loss of the Honeycomb Panels (허니콤재의 투과손실 저하 인자에 대한 고찰)

  • Kim, Seock-Hyun;Lee, Hyun-Woo;Kim, Jung-Tae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2185-2190
    • /
    • 2008
  • In a high speed train, multi-layered panels for floor, side wall and roof are important sound insulating part. As these multi-layered panels require high bending strength vs. weight, corrugated steels or aluminium honeycomb panel are generally used. However, with some inevitable factors, these panels show lower sound insulation performance than that of the plate with the same weight. Transmission loss(TL) often severely decreases in a particular frequency range because of the decrease of the critical frequency, occurrence of local resonance modes and cavity resonance modes, which are not shown in a plate. In this study, frequency range and cause of the TL drop are investigated on the corrugated and honeycomb panels.

  • PDF

Miniaturized Broadband ENG ZOR Antenna Using a High Permeability Substrate

  • Ko, Seung-Tae;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.201-206
    • /
    • 2011
  • This paper presents a miniaturized epsilon negative (ENG) zeroth-order resonance (ZOR) patch antenna with an improved bandwidth. The miniaturization and the broad bandwidth of the ENG ZOR patch antenna are achieved by using a meandered via and a high permeability substrate instead of a straight via and a dielectric substrate. The use of a meandered via allows miniaturization of the ENG ZOR patch antenna without narrowing the bandwidth. The use of a high permeability substrate allows further miniaturization of the ENG ZOR patch antenna and improvement of the bandwidth. A high permeability substrate consisting of a multi-layered substrate is designed to have a small material loss. The antenna (kr=0.32) has a 10 dB fractional bandwidth of ~1 %, which is 1.74 times as broad as that of an antenna with a dielectric substrate.

High Frequency Inverter for Induction Heating with Multi-Resonant Zero Current Switching (다중공진 영전류 스위칭을 이용한 고주파 유도가열용 인버터)

  • Ra, B.H.;Suh, K.Y.;Lee, H.W.;Kim, K.T.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.38-40
    • /
    • 2002
  • In the case of conventional high frequency inverter, with damage of switch by surge voltage when switch gets into compulsion extinction by load accident and so on because reactor is connected by series to switch, or there was problem of conduction loss by reactor's resistivity component, Also, it has controversial point of that can not ignore conduction loss of switch in complete work kind action of soft switching. In this paper, as high frequency induction heating power supply, we propose half bridge type multi resonance soft switching high frequency inverter topology that can realize high amplitude operation of load current with controlling switch current by multiplex resonance, mitigating surge voltage when switch gets into compulsion extinction and to be complete operation of zero current switching by opposit parallel connected reactor to inverter switch. and do circuit analysis for choice of most suitable circuit parameter of circuit

  • PDF

Investigation of Relationship between Reflection Resonance and Applied Current Density in Bragg Photonic Crystal

  • Kim, Bumseok
    • Journal of Integrative Natural Science
    • /
    • v.5 no.1
    • /
    • pp.27-31
    • /
    • 2012
  • Relationship between reflection resonance and applied current density in Bragg photonic crystal has been investigated. Multiple bit encodes of distributed Bragg reflector features have been prepared by electrochemical etching of crystalline silicon by using various square wave current densities. Optical characterization of multi-encoding of distributed Bragg reflectors on porous silicon was achieved by Ocean optics 2000 spectrometer for the search of possible applications of multiple bit encoding of distributed Bragg reflectors such as multiplexed assays and chemical sensors. The morphology and cross-sectional structure of multi-encoded distributed Bragg reflectors was investigated by field emission scanning electron micrograph.

Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads

  • Jin-Peng Song;Gui-Lin She;Yu-Jie He
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.99-109
    • /
    • 2024
  • Studying the dynamic behavior of axially moving cylindrical shells in hygro-thermal environments has important theoretical and engineering value for aircraft design. Therefore, in this paper, considering hygro-thermal effect, the nonlinear forced vibration of an axially moving cylindrical shell made of functionally graded materials (FGM) is studied. It is assumed that the material properties vary continuously along the thickness and contain pores. The Donnell thin shell theory is used to derive the motion equations of FGM cylindrical shells with hygro-thermal loads. Under the four sides clamped (CCCC) boundary conditions, the Gallekin method and multi-scale method are used for nonlinear analysis. The effects of power law index, porosity coefficient, temperature rise, moisture concentration, axial velocity, prestress, damping and external excitation amplitude on nonlinear forced vibration are explored through parametric research. It can be found that, the changes in temperature and humidity have a significant effect. Increasing in temperature and humidity will cause the resonance position to shift to the left and increase the resonance amplitude.

Nonlinear effects in solution NMR: A numerical study on dynamics of dipolar demagnetizing field and radiation damping

  • Sangdoo Ahn;Lee, Sanghyuk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.3 no.2
    • /
    • pp.71-83
    • /
    • 1999
  • The dynamics of the dipolar demagnetizing field is investigated by numerical simulation. The effects of radiation damping, molecular diffusion, and relaxation processes on the dipolar demagnetizing field are examined in terms of the modulation pattern of the z-magnetization and the signal intensity variation. Simulations for multi-components suggest applications for sensitivity enhancement in favorable conditions.

  • PDF