• Title/Summary/Keyword: Multi-resolution method

검색결과 551건 처리시간 0.027초

적응형 가중치 잔차 블록을 적용한 다중 블록 구조 기반의 단일 영상 초해상도 기법 (Single Image Super Resolution using Multi Grouped Block with Adaptive Weighted Residual Blocks)

  • 한현호
    • 디지털정책학회지
    • /
    • 제3권3호
    • /
    • pp.9-14
    • /
    • 2024
  • 본 논문은 단일 영상 기반의 초해상도에서 결과의 품질을 개선하기 위해 적응형 가중치를 적용한 잔차 블록으로 구성된 다중 블록 구조를 이용하는 방법을 제안하였다. 딥러닝을 이용한 초해상도를 생성하는 과정에서 품질 향상을 위한 가장 중요한 요소는 특징 추출 및 적용이다. 해상도가 낮아 이미 손실된 세부사항을 복원하기 위해 다양한 특징을 추출하는 것이 최우선이지만 네트워크의 구조가 깊어지거나 복잡해지는 등의 문제가 발생하기 때문에 실제 적용에서 제한사항이 있다. 따라서 특징 추출 과정은 효율적으로 구성하고 적용 과정을 개선하여 품질을 개선하였다. 이를 위해 최초 특징 추출 이후 다중 블록 구조를 구성하였고 블록 내부에는 중첩된 잔차 블록을 구성한 뒤 적응형 가중치를 적용하였다. 또한 최종 고해상도 복원을 위해 다중 커널을 이용한 영상 재구성 과정을 적용함으로써 결과물의 품질을 향상시켰다. 평가를 위해 원본 영상 대비 PSNR과 SSIM 값을 구하였고 기존 알고리즘과 비교하여 제안하는 방법의 성능 향상을 확인하였다.

Multi-resolution Fusion Network for Human Pose Estimation in Low-resolution Images

  • Kim, Boeun;Choo, YeonSeung;Jeong, Hea In;Kim, Chung-Il;Shin, Saim;Kim, Jungho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권7호
    • /
    • pp.2328-2344
    • /
    • 2022
  • 2D human pose estimation still faces difficulty in low-resolution images. Most existing top-down approaches scale up the target human bonding box images to the large size and insert the scaled image into the network. Due to up-sampling, artifacts occur in the low-resolution target images, and the degraded images adversely affect the accurate estimation of the joint positions. To address this issue, we propose a multi-resolution input feature fusion network for human pose estimation. Specifically, the bounding box image of the target human is rescaled to multiple input images of various sizes, and the features extracted from the multiple images are fused in the network. Moreover, we introduce a guiding channel which induces the multi-resolution input features to alternatively affect the network according to the resolution of the target image. We conduct experiments on MS COCO dataset which is a representative dataset for 2D human pose estimation, where our method achieves superior performance compared to the strong baseline HRNet and the previous state-of-the-art methods.

Papoulis-Gerchberg 방법의 개선에 의한 초해상도 영상 화질 향상 (Super-resolution image enhancement by Papoulis-Gerchbergmethod improvement)

  • 장효식;김덕규;정윤수;이태균;원철호
    • 센서학회지
    • /
    • 제19권2호
    • /
    • pp.118-123
    • /
    • 2010
  • This paper proposes super-resolution reconstruction algorithm for image enhancement. Super-resolution reconstruction algorithms reconstruct a high-resolution image from multi-frame low-resolution images of a scene. Conventional super- resolution reconstruction algorithms are iterative back-projection(IBP), robust super-resolution(RS)method and standard Papoulis-Gerchberg(PG)method. However, traditional methods have some problems such as rotation and ringing. So, this paper proposes modified algorithm to improve the problem. Experimental results show that this proposed algorithm solve the problem. As a result, the proposed method showed an increase in the PSNR for traditional super-resolution reconstruction algorithms.

다중해상도 알고리즘을 이용한 자동 해석모델 생성 (Automatic Generation of Analysis Model Using Multi-resolution Modeling Algorithm)

  • 김민철;이건우;김성찬
    • 한국CDE학회논문집
    • /
    • 제11권3호
    • /
    • pp.172-182
    • /
    • 2006
  • This paper presents a method to convert 3D CAD model to an appropriate analysis model using wrap-around, smooth-out and thinning operators that have been originally developed to realize the multi-resolution modeling. Wrap-around and smooth-out operators are used to simplify 3D model, and thinning operator is to reduce the dimension of a target object with simultaneously decomposing the simplified 3D model to 1D or 2D shapes. By using the simplification and dimension-reduction operations in an appropriate way, the user can generate an analysis model that matches specific applications. The advantage of this method is that the user can create optimized analysis models of various simplification levels by selecting appropriate number of detailed features and removing them.

웨이브렛 변환된 다해상도 영상을 이용한 계층적 움직임 추정 (Multi-resolution hierarchical motion estimation in the wavelet transform domain)

  • 김진태;장준필;김동욱;최종수
    • 전자공학회논문지B
    • /
    • 제33B권8호
    • /
    • pp.50-59
    • /
    • 1996
  • In this paper, a new hierarchical motion estiamtion scheme using the wavelet transformed multi-resolution image layers is proposed. Compared with the full search motion estimation method, the existing hierarchical methods remarkably reduce the amount of the computation but their efficiencies are depreciated by the local minima problem. In order to solve the local minima problem, the multi-resolution image layers are composed using the wavelet transform and the number of layers participated in the motion estimation for a block is determined by considering of its low band energy and higher band energy on the first wavelet transformed layer. The ratio between higher band energy and low band energy of each block is evaluated and in the case of the blocks which include relatively large higher band energy, the motion estimation is carried out in the high resolution layer. Otherwise, all layers are used. The final motion vectors are obtained in the first wavelet transformed layer. So less bits for motion vectors are transmitted, and the decomposition of received image using inverse wavelet transform decreases the blocking effect.

  • PDF

RECONSTRUCTING A SUPER-RESOLUTION IMAGE FOR DEPTH-VARYING SCENES

  • Yokoyamay, Ami;Kubotaz, Akira;Hatoriz, Yoshinori
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.446-449
    • /
    • 2009
  • In this paper, we present a novel method for reconstructing a super-resolution image using multi-view low-resolution images captured for depth varying scene without requiring complex analysis such as depth estimation and feature matching. The proposed method is based on the iterative back projection technique that is extended to the 3D volume domain (i.e., space + depth), unlike the conventional superresolution methods that handle only 2D translation among captured images.

  • PDF

A depth-based Multi-view Super-Resolution Method Using Image Fusion and Blind Deblurring

  • Fan, Jun;Zeng, Xiangrong;Huangpeng, Qizi;Liu, Yan;Long, Xin;Feng, Jing;Zhou, Jinglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.5129-5152
    • /
    • 2016
  • Multi-view super-resolution (MVSR) aims to estimate a high-resolution (HR) image from a set of low-resolution (LR) images that are captured from different viewpoints (typically by different cameras). MVSR is usually applied in camera array imaging. Given that MVSR is an ill-posed problem and is typically computationally costly, we super-resolve multi-view LR images of the original scene via image fusion (IF) and blind deblurring (BD). First, we reformulate the MVSR problem into two easier problems: an IF problem and a BD problem. We further solve the IF problem on the premise of calculating the depth map of the desired image ahead, and then solve the BD problem, in which the optimization problems with respect to the desired image and with respect to the unknown blur are efficiently addressed by the alternating direction method of multipliers (ADMM). Our approach bridges the gap between MVSR and BD, taking advantages of existing BD methods to address MVSR. Thus, this approach is appropriate for camera array imaging because the blur kernel is typically unknown in practice. Corresponding experimental results using real and synthetic images demonstrate the effectiveness of the proposed method.

히스토그램 정보와 dark channel prior를 이용한 다해상도 기반 단일 영상 안개 제거 알고리즘 (A Single Image Defogging Algorithm Based on Multi-Resolution Method Using Histogram Information and Dark Channel Prior)

  • 양승용;양정은;홍석근;조석제
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권6호
    • /
    • pp.649-655
    • /
    • 2015
  • 본 논문에서는 효과적인 단일 영상 안개 제거 알고리즘을 제안한다. 잘 알려진 안개 제거 알고리즘인 dark channel prior(DCP)는 경계선 영역에서의 후광 현상(halo artifact) 및 결과 영상의 저대비를 초래하고 전달량 정제(refinement) 과정에서 긴 계산 시간을 필요로 한다. 이러한 문제들을 해결하기 위해 제안한 방법은 전달량을 추정할 때 DCP와 히스토그램 정보로 구성된 비용함수를 이용하고, 빠른 처리를 위해 다해상도 기법을 이용한다. 히스토그램 정보는 안개 제거 결과의 저대비 현상을 방지해주고, 에지 정보를 참고하는 다해상도 기법은 계산 시간을 감소시키고 후광 현상을 방지할 수 있다. 다수의 안개 영상에 대한 실험을 통해 제안한 방법이 기존의 방법들보다 효율적이고 우수함을 확인하였다.

다해상도 가법과 AD-Census를 이용한 유전 알고리즘 기반의 스테레오 정합 (A Stereo Matching Based on A Genetic Algorithm Using A Multi-resolution Method and AD-Census)

  • 홍석근;조석제
    • 융합신호처리학회논문지
    • /
    • 제13권1호
    • /
    • pp.12-18
    • /
    • 2012
  • 스테레오 대응성은 스테레오 비전에서 중요한 문제이다. 본 논문은 다해상도 기법과 AD-Census를 이용한 유전 알고리즘 기반의 스테레오 정합 기법을 제안한다. 정합 환경을 최적화 문제로 간주하여 유전 알고리즘으로 변위를 탐색한다. 그리고 에지 픽셀을 이용한 적응적 염색체 구조와 교배 방식을 적용한다. 비용함수는 스테레오 정합에서 주로 고려할 수 있는 제약 조건으로 구성하였고, 변위오차를 줄이기 위해 AD-Census 척도를 사용하였다. 처리의 효율을 높이기 위해 영상 피라미드 방법을 적용하여 최저해상도에서 최초 변위 도를 계산한다. 그리고 최초 변위도는 다음 해상도 단계로 전파되어, 보간된 후 지역 특징 벡터를 이용하여 정제를 수행한다. 실험을 통해 제안한 방법이 다른 유전 알고리즘 기반 기법들에 비해 변위 탐색 시간을 감소시킬 뿐만 아니라 정합의 타당성을 보증함을 확인하고자 한다.

Multi-pass Sieve를 이용한 한국어 상호참조해결 (Korean Coreference Resolution using the Multi-pass Sieve)

  • 박천음;최경호;이창기
    • 정보과학회 논문지
    • /
    • 제41권11호
    • /
    • pp.992-1005
    • /
    • 2014
  • 상호참조해결은 문서 내에서 선행하는 명사구와 현재 등장한 명사구 간에 같은 개체를 의미하는 지를 결정하는 문제로 정보 추출, 문서분류 및 요약, 질의응답 등에 적용된다. 본 논문은 상호참조해결의 규칙기반 방법 중 가장 성능이 좋은 Stanford의 다 단계 시브(Multi-pass Sieve) 시스템을 한국어에 적용한다. 본 논문에서는 모든 명사구를 멘션(mention)으로 다루고 있으며, Stanford의 다 단계 시브 시스템과는 달리 멘션 추출을 위해 의존 구문 트리를 이용하고, 동적으로 한국어 약어 리스트를 구축한다. 또한 한국어 대명사를 참조하는데 있어 중심화 이론 중 중심의 전이적인 특성을 적용하여 가중치를 부여하는 방법을 제안한다. 실험 결과 F1 값은 MUC 59.0%, B3 59.5%, Ceafe 63.5%, CoNLL(평균) 60.7%의 성능을 보였다.