대한원격탐사학회 2008년도 International Symposium on Remote Sensing
/
pp.72-75
/
2008
Image segmentation techniques becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Seeded Region Growing (SRG) and Edge Information. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying SRG. Finally the region merging process, using region adjacency graph (RAG), was carried out to get the final segmentation result. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.
조직병리에서 전체 슬라이드 영상의 정확한 분할은 질병 진단과 치료 계획에 매우 중요한 작업이다. 그러나 전체 슬라이드 영상은 크기가 크고 조직의 형태, 염색 및 촬영 조건이 다양하기 때문에 기존의 자동 영상 분할 알고리즘을 항상 적용하는 것은 어렵다. 최근 인간의 전문 지식과 알고리즘을 결합한 대화형 영상 분할 기술의 발전은 전체 슬라이드 영상 분할의 효율 성과 정확성을 개선할 수 있는 가능성을 보여주었다. 그러나 이러한 접근 방식은 동시에 어려운 과제를 제기하기도 했다. 본 논문에서는 다중 해상도 전체 슬라이드 영상을 활용하는 새로운 대화형 분할 방법인 ZoomISEG를 제안한다. 기존의 단일 스케일 방법과의 비교 및 ablation study를 통해 제안된 방법의 효율성과 성능을 입증한다. 실험 결과, 제안된 방법은 사람의 개입을 줄이면서도 최고 해상도 데이터를 사용하는 방식에 필적하는 정확도를 달성함을 확인했다.
대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
/
pp.218-224
/
1998
The coefficients of variation obtained from three typical vegetation indices of eight levels of multi-spatial resolution images in urban areas were employed to identify the optimum spatial resolution in terms of maintaining information quality. These multi-spatial resolution images were prepared by degrading 1 meter simulated, 16 meter ADEOS/AVNIR, and 30 meter Landsat-TM images. Normalized Difference Vegetation Index (NDVI), Perpendicular Vegetation Index (PVI) and Soil Adjusted Ratio Vegetation Index (SARVI) were applied to reduce data redundancy and compare the characteristics of multi-spatial resolution image of vegetation indices. The threshold point on the curve of the coefficient of variation was defined as the optimum resolution level for the analysis with multi-spatial resolution image sets. Also, the results from the image segmentation approach of region growing to extract man-made features were compared with these multi-spatial resolution image sets.
Recently, the spatial resolution of earth observation satellites is significantly increased to a few meters. Such high spatial resolution images definitely will provide lots of information for detail-thirsty remote sensing users. However, it is more difficult to develop automated image algorithms for automated image feature extraction and pattern recognition. In this study, we propose a two-stage procedure to extract road information from high resolution satellite images. At first stage, a watershed segmentation technique is developed to classify the image into various regions. Then, a knowledge is built for road and used to extract the road regions. In this study, we use panchromatic and multi-spectral images of the IKONOS satellite as test dataset. The experiment result shows that the proposed technique can generate suitable and meaningful road objects from high spatial resolution satellite images. Apparently, misclassified regions such as parking lots are recognized as road needed further refinement in future research.
영상분할은 관심대상이 되는 물체의 영역을 추출하기 위한 객체기반 영상분류의 전처리과정으로서 원격탐사 영상분석에서 그 중요성 날로 커지고 있다. 본 연구에서는 개선된 SRG(Seeded Region Growing) 기법과 영역병합과정을 이용하여 고해상도 영상분할을 위한 새로운 방법을 제안한다. 이를 위해 우선 QuickBird 융합영상에서 추출된 다중분광 에지정보를 이용하여 초기 시드포인트를 자동으로 추출하였다. 추출된 시드포인트에 영상의 기하학적인 정보와 분광정보를 반영할 수 있는 개선된 SRG 기법을 적용하여 초기 영상 분할을 수행하였다. 최종적으로 앞선 초기분할 결과 향상을 위해 분할된 영역의 평균분광정보를 활용하여 영역병합을 수행하여 최종분할결과를 도출하였다. 제안된 기법의 효율성을 평가하기 위해 무감독 영상분할 평가측정치를 이용하여 정확도 평가를 수행하였다. 실험결과 제안한 기법은 고해상도 영상분할에 유용하게 적용될 수 있으리라 판단된다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제16권4호
/
pp.246-253
/
2016
Infrared (IR) imaging has been researched for various applications such as surveillance. IR radiation has the capability to detect thermal characteristics of objects under low-light conditions. However, automatic segmentation for finding the object of interest would be challenging since the IR detector often provides the low spatial and contrast resolution image without color and texture information. Another hindrance is that the image can be degraded by noise and clutters. This paper proposes multi-level segmentation for extracting regions of interest (ROIs) and objects of interest (OOIs) in the IR scene. Each level of the multi-level segmentation is composed of a k-means clustering algorithm, an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering initializes the parameters of the Gaussian mixture model (GMM), and the EM algorithm estimates those parameters iteratively. During the multi-level segmentation, the area extracted at one level becomes the input to the next level segmentation. Thus, the segmentation is consecutively performed narrowing the area to be processed. The foreground objects are individually extracted from the final ROI windows. In the experiments, the effectiveness of the proposed method is demonstrated using several IR images, in which human subjects are captured at a long distance. The average probability of error is shown to be lower than that obtained from other conventional methods such as Gonzalez, Otsu, k-means, and EM methods.
This paper presents an algorithm for simplification of 3D triangular mesh data, based on mesh simplification. The proposed algorithm is first attempt to segment the entire mesh into several parts using the orientation of triangles. Then simplification algorithm is applied to each segment that has similar geometric property. The proposed two step multi-resolution modeling scheme would yield better performance then conventional algorithm like edge collapse technique, since the segmentation step can give global information on the input shape. The experimental results show that the proposed algorithm is performed efficiently.
최근 의료 장비들이 발전하고 진단 및 연구에 다양하게 이용되면서 이로부터 얻은 3차원 의료 영상들을 자동으로 처리해주는 기술의 수요가 늘고 있다. 자동 뼈 영역화는 이러한 기술들 중 하나로써 골다공증이나 뼈 골절, 골격질환 등의 진단의 효율성을 크게 높여 줄 것으로 기대되고 있다. 현재까지 자동 뼈 영역화를 위한 연구들이 다양하게 진행되었지만 2차원 영상과는 달리 많은 데이터양과 주변 조직과의 모호한 경계들이 많다는 의료영상의 특성 때문에, 실제 진단에 사용할 수 있을만한 성능을 얻지 못하고 있다. 본 논문에서는 이와 같은 문제를 해결하기 위해 다중 해상도를 기반으로 하여 수행속도가 빠르고 영역화 성능이 좋은 자동 뼈 영역화 기법을 제안한다. 낮은 해상도 단계에서는 학습된 집합의 뼈 정보들을 바탕으로 최근 제안된 제한된 브랜치 앤 민컷 기법을 이용하여 대략적인 뼈 위치 및 비슷한 템플릿을 검출하고, 이후 해상도를 높여가면서 정합 과정과 영역화 과정을 반복적으로 수행한다. 제안하는 기법의 성능을 확인하기 위해 무릎 자기공명영상(magnetic resonance image)내에서 대퇴골(femur)과 경골(tibia)을 영역화 하는 실험을 진행하였으며, 100개의 학습 데이터들을 바탕으로 50개 영상에서 뼈들을 영역화 하였다. 제안하는 기법은 정확성 및 수행속도 측면에서 제한된 브랜치 앤 민컷에 비해 향상된 결과를 나타냈다.
A variety of medical service applications in the field of the Internet of Things (IoT) are being studied. Segmentation is important to identify meaningful regions in images and is also required in 3D images. Previous methods have been based on gray value and shape. The Visible Korean dataset consists of serially sectioned high-resolution color images. Unlike computed tomography or magnetic resonance images, automatic segmentation of color images is difficult because detecting an object's boundaries in colored images is very difficult compared to grayscale images. Therefore, skilled anatomists usually segment color images manually or semi-automatically. We present an out-of-core 3D segmentation method for large-scale image datasets. Our method can segment significant regions in the coronal and sagittal planes, as well as the axial plane, to produce a 3D image. Our system verifies the result interactively with a multi-planar reconstruction view and a 3D view. Our system can be used to train unskilled anatomists and medical students. It is also possible for a skilled anatomist to segment an image remotely since it is difficult to transfer such large amounts of data.
영상분할은 관심대상이 되는 물체의 영역을 추출하기 위한 객체기반 영상분류의 전처리과정으로서 원격 탐사 영상분석에서 그 중요성 날로 커지고 있다. 본 연구에서는 고해상도 위성영상의 분광 및 공간정보를 반영할 수 있는 새로운 분할방법을 제안한다. 이를 위해 우선 다중분광 에지정보의 지역적 변이특성을 이용하여 영상에서 자동으로 초기시드 점을 추출하였다. 추출된 시드 점과 이웃하는 점들과의 유사성을 기반으로 영역 확장의 우선순위를 결정하는 MSRG가법을 이용하여 영상분할을 수행하였다. 제안된 기법의 효율성을 평가하기 위해 기존에 위성영상분할에 많이 사용된 유역분할법과 영역성장기법과의 시각적/정량적 비교평가를 수행하였다. 정량적 비교평가 방법으로는 무감독 영상분할 평가 측정치와 동일한 조건하에서 수행된 객체기반 분류 정확도를 이용하였다. 실험 결과 제안한 기법은 고해상도 위성영상의 객체기반분석에 유용하게 적용될 수 있으리라 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.