• 제목/요약/키워드: Multi-pressing

검색결과 63건 처리시간 0.074초

무금형 다점 펀치를 사용한 선체외판의 분할 성형 가공 정보 계산 시스템 개발 (Mechanical Bending Process and Application for a Large Curved Shell Plate by Multiple Point Press Machine)

  • 황세윤;이장현;류철호;한명수;김광호;김광식
    • 대한조선학회논문집
    • /
    • 제48권6호
    • /
    • pp.528-538
    • /
    • 2011
  • As a forming method for curved hull plates more efficient than the flame bending, mechanical bending using multi point press forming and die-less forming is discussed in this paper. the mechanical forming is a flexible manufacturing system for automatically forming of hull parts. It is especially suited to varied curved parts. This paper discusses a multiple point pressing machine composed of a pair of reconfigurable punches in order to achieve the rapid forming of curved hull plates using division forming and presents how forming information is obtained from the given design surface. Although the mechanical forming can be efficient in the metal forming, spring back after pressing is a phenomenon which must be carefully considered when quantifying the process variables. If the spring back is not accurately controlled, the fabricated shell plate cannot meet assembly tolerance. This paper describes the principles to calculate the proper stroke of each punch at the divided areas. the strokes are determined by an iterative process of sequential pressing and spring back compensation from an unfolded flat shape to its given design surface. FEA(finite element analysis) is used to simulate the spring back of the plate and the IDA(iterative displacement adjustment) method adjusts the offset of pressing punches from the deformation results and the design surface. The shape deviations of two surfaces due to spring back are compensated by integrated system using FEA and IDA method. For the practical application, It is aimed to develop an integrated system that can automatically perform the compensation process and calculate strokes of punches of the double sides' reconfigurable multiple-press machine and some experimental results obtained with mechanical bending are presented.

Effect of Fines Distribution on Press Dewatering and Physical Properties of Multi-ply Sheet

  • Lee, Hak-Lae;Youn, Hye-Jung;Kang, Tae-Young;Choi, Ik-Sun
    • 펄프종이기술
    • /
    • 제40권5호
    • /
    • pp.36-41
    • /
    • 2008
  • Multi-ply sheet forming has many advantages including the possibility of using wide range of materials in a given structure, lowering production cost, making higher grammage products and so on. But, incorrect structure of sheet makes flow resistance higher so that it shows poor dewatering in press section. One of major factors that affect sheet structure and dewatering property is fines content in each layer. We, therefore, examined the press dewatering of multi-ply sheet that has the different fines content in each layer and the effect of fines distribution on physical properties of sheet to find a technology for optimum utilization of raw materials. In case of two layered sheet, the sheet which was composed of layers with the different flow resistance showed higher dewatering rate than one which has the same flow resistance. And the more difference in fines content for layers existed, the more dewatering occurred. For three layered sheets, dewatering is mainly dependent on fines content of bottom layer. Strength properties were affected by dewatering degree and multi-ply sheet structure.

Bi계 고온초전도 다심케이블 제작에 관한 연구 (Development of multi filament cable with Bi high-Tc superconducting system)

  • 김민기;강형곤;최효상;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1993년도 추계학술대회 논문집
    • /
    • pp.43-46
    • /
    • 1993
  • Superconducting cable (Ic: 60 A at 77K. 10 filaments) with Bi high-Tc superconducting system was developed by powder - in - tube method. Pressing and sintering process of the cables were repeated for growth of 2223 high-Tc superconducting phase. The cable can be fabricate by twist method that is nessary for high current density and cooled circulative system. This cab1e system can be used for commercial.

  • PDF

등통로각압축공정을 이용하여 제조된 Cu-15 wt%Ag 복합재의 미세구조 (Microstructural Evolution of Cu-15 wt%Ag Composites Processed by Equal Channel Angular Pressing)

  • 이인호;홍순익;이갑호
    • 대한금속재료학회지
    • /
    • 제50권12호
    • /
    • pp.931-937
    • /
    • 2012
  • The microstructure of Cu-15 wt%Ag composites fabricated by equal channel angular pressing (ECAP) with intermediate heat treatment at $320^{\circ}C$ was investigated by transmission electron microscopy (TEM) observations. Ag precipitates with a thickness of 20-40 nm were observed in the eutectic region of the Cu-15 wt%Ag composite solution treated at $700^{\circ}C$ before ECAP. The Cu matrix and Ag precipitates had a cube on cube orientation relationship. ECAPed composites exhibited ultrafine-grained microstructures with the shape and distribution dependent on the processing routes. For route A in which the sample was pressed without rotation between each pass, the Cu and Ag grains were elongated along the shear direction and many micro-twins were observed in elongated Cu grains as well as in Ag filaments. The steps were observed on coherent twin boundaries in Cu grains. For route Bc in which the sample was rotated by 90 degrees after each pass, a subgrain structure with misorientation of 2-4 degree by fragmentation of the large Cu grains were observed. For route C in which the sample was rotated by 180 degrees after each pass, the microstructure was similar to that of the route A sample. However, the thickness of the elongated grains along the shear direction was wider than that of the route A sample and the twin density was lower than the route A sample. It was found that more microtwins were formed in ECAPed Cu-15 wt%Ag than in the drawn sample. Grain boundaries were observed in relatively thick and long Ag filaments in Cu-15 wt%Ag ECAPed by route C, indicating the multi-crystalline nature of Ag filaments.

선박 외판 성형에서 목적 형상과 전개 평판의 최적 정합을 위한 ICP(Iterative Closest Point) 알고리즘 적용 (Application of ICP(Iterative Closest Point) Algorithm for Optimized Registration of Object Surface and Unfolding Surface in Ship-Hull Plate Forming)

  • 이장현;윤종성;류철호;이황범
    • 한국CDE학회논문집
    • /
    • 제14권2호
    • /
    • pp.129-136
    • /
    • 2009
  • Generally, curved surfaces of ship hull are deformed by flame bending (line heating), multi-press forming, and die-less forming method. The forming methods generate the required in-plane/bending strain or displacement on the flat plate to make the curved surface. Multi-press forming imposes the forced displacements on the flat plate by controlling the position of each pressing points based upon the shape difference between the unfolded flat plate and the curved object shape. The flat plate has been obtained from the unfolding system that is independent of the ship CAD. Apparently, the curved surface and the unfolded-flat surface are expressed by different coordinate systems. Therefore, one of the issues is to find a registration of the unfolded surface and the curved shape for the purpose of minimum amount of forming works by comparing the two surfaces. This paper presents an efficient algorithm to get an optimized registration of two different surfaces in the multi-press forming of ship hull plate forming. The algorithm is based upon the ICP (Iterative Closest Point) algorithm. The algorithm consists of two iterative procedures including a transformation matrix and the closest points to minimize the distance between the unfolded surface and curved surfaces. Thereby the algorithm allows the minimized forming works in ship-hull forming.

강소성변형된 미세립 AM60 마그네슘 합금의 피로거동 (Fatigue Behavior of Fine Grained AM60 Magnesium Alloy Produced by Severe Plastic Deformation)

  • 유인동;이만석;김호경
    • 한국안전학회지
    • /
    • 제27권3호
    • /
    • pp.15-19
    • /
    • 2012
  • The fatigue behavior of AM60 magnesium alloy produced by equal channel angular pressing(ECAP) process was investigated through fatigue lifetime and fatigue crack propagation rate tests. The grain structure of the material was refined from 19.2 ${\mu}m$ to 2.3 ${\mu}m$ after 6 passes of ECAP at 493 K. The yield strength(YS) and ultimate tensile strength (UTS) increase after two passes but decrease with further pressing, although the grain size becomes finer with increasing pass number. The softening effect due to texture anisotropy overwhelmed the strengthening effect due to grain refinement after 2 passes. A large enhancement in fatigue strength was achieved after two ECAP passes. The current finding suggests that two passed material is better than the multi-passed material in view of the static strength and fatigue performance.

Microstructure-Properties Relationships of Ti-6Al-4V Parts Fabricated by Selective Laser Melting

  • Mezzetta, Justin;Choi, Joon-Phil;Milligan, Jason;Danovitch, Jason;Chekir, Nejib;Bois-Brochu, Alexandre;Zhao, Yaoyao Fiona;Brochu, Mathieu
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • 제5권5호
    • /
    • pp.605-612
    • /
    • 2018
  • This work investigates the relationships between the static mechanical properties of Ti-6Al-4V manufactured through selective laser melting (SLM) and post-process heat treatments, namely stress relieve, annealing and hot isostatic pressing (HIP). In particular, Ti-6Al-4V parts were fabricated in three different build orientations of X, Z, and $45^{\circ}$ to investigate the multi-directional mechanical properties. The results showed that fully densified Ti-6Al-4V parts with densities of up to 99.5% were obtained with optimized SLM parameters. The microstructure of stress relieved and mill annealed samples was dominated by fine ${\alpha}^{\prime}$ martensitic needles. After HIP treatment, the martensite structure was fully transformed into ${\alpha}$ and ${\beta}$ phases (${\alpha}+{\beta}$ lamellar). Within the realm of tensile properties, the yield and ultimate strength values were found statistically similar with respect to the built orientation for a given heat treatment. However, the ductility was found orientation dependent for the HIP samples, where a lower value was observed for samples built in the X direction.

ECAP공법으로 제조된 무산소동의 미세조직 및 기계적 성질 이방성에 대한 고찰 (A Study on the Microstructure and Anisotropic Mechanical Properties of Oxygen-Free Copper Fabricated by Equal Channel Angular Pressing)

  • 이재근;홍영곤;김형섭;박성혁
    • 한국군사과학기술학회지
    • /
    • 제22권4호
    • /
    • pp.492-500
    • /
    • 2019
  • Equal channel angular pressing(ECAP) is a severe plastic deformation technique capable of introducing large shear strain in bulk metal materials. However, if an ECAPed material has an inhomogeneous microstructure and anisotropic mechanical properties, this material is difficult to apply as structural components subjected to multi-axial stress during use. In this study, extruded oxygen-free copper(OFC) rods with a large diameter of 42 mm are extruded through ECAP by route Bc up to 12 passes. The variations in the microstructure, hardness, tensile properties, and microstructural and mechanical homogeneity of the ECAPed samples are systematically analyzed. High-strength OFC rods with a homogeneous and equiaxed-ultrafine grain structure are obtained by the repeated application of ECAP up to 8 and 12 passes. ECAPed samples with 4 and 8 passes exhibit much smaller differences in terms of the average grain sizes on the cross-sectional area and the tensile strengths along the axial and circumferential directions, as compared to the samples with 1 and 2 passes. Therefore, it is considered that the OFC materials, which are fabricated via the ECAP process with pass numbers of a multiple of 4, are suitable to be applied as high-strength structural parts used under multi-axial stress conditions.

판재성형 가공에서의 다축 단동 유닛을 이용한 복합금형용 Double-moving System 개발 (A development of double-moving system for composite die using multi-axis shuttle unit in the sheet metal forming)

  • 김동욱;최계광
    • Design & Manufacturing
    • /
    • 제10권2호
    • /
    • pp.39-43
    • /
    • 2016
  • Most of automobile parts manufactured through sheet metal forming are mass-produced by using press mold. In recent years, automation and speeding up of press lines have been expanding to maximize product productivity using a press die. The proportion of the moving time in the press line is high, and therefore requires high-speed and automated equipment for the moving process. In this paper, to provide the double-moving system can be the moving time reduction and increased productivity. Developed transport system consists of the material supply, the material feeding device and the PLC controller and the devices are positioned between each of the pressing process. In this paper, the double-moving system including developed units using a multi-axial single-acting through this reduced the C/T(cycle time) and improved the productivity.

다관절 핑거 로봇의 파지 운동 모델과 제어에 관한 연구 (A Study on Model and Control of Pinching Motion for Multi-Fingered Robot)

  • 엄혁;최종환;김용석;양순용;이진걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1060-1067
    • /
    • 2005
  • This paper attempts to derive and analyze the dynamic system of pinching a rigid object by means of two multi-degrees-of-freedom robot fingers with soft and deformable tips. It is shown firstly that a set of differential equation describing dynamics system of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. It is shown secondly that the problems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. In this paper, the control method for dynamic stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation that the control system gives the performance improvement in the dynamic stable grasping of the dual fingers robot with soft tips.

  • PDF