• Title/Summary/Keyword: Multi-press Forming

Search Result 53, Processing Time 0.028 seconds

Application of IDA Method for Hull Plate Forming by Multi-Point Press Forming (다점 프레스를 이용한 곡면 성형의 가공 정보 산출을 위한 IDA방법)

  • Yoon, Jong-Sung;Lee, Jang-Hyun;Ryu, Cheol-Ho;Hwang, Se-Yun;Lee, Hwang-Beom
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.75-82
    • /
    • 2008
  • Flame bending has been extensively used in the shipbuilding industry for hull plate forming In flame bending it is difficult to obtain the desired shape because the residual deformation dependson the complex temperature distribution and the thermal plastic strain. Mechanical bending such as reconfigurable press forming multi-point press forming or die-less forming has been found to improve the automation of hull plateforming because it can more accurately control the desired shape than line heating. Multi-point forming is a process in which external forces are used to form metal work-pieces. Therefore it can be a flexible and efficient forming technique. This paper presents an optimal approach to determining the press-stroke for multi-point press forming of curved shapes. An integrated configuration of Finite element analysis (FEA) and spring-back compensation algorithm is developed to calculate the strokes of the multi-point press. Not only spring-back is modeled by elastic plastic shell elements but also an iterative algorithm to compensate the spring-back is applied to adjust the amount of pressing stroke. An iterative displacement adjustment (IDA) method is applied by integration of the FEA procedure and the spring-back compensation work. Shape deviation between the desired surface and deform£d plate is minimized by the IDA algorithm.

Application of ICP(Iterative Closest Point) Algorithm for Optimized Registration of Object Surface and Unfolding Surface in Ship-Hull Plate Forming (선박 외판 성형에서 목적 형상과 전개 평판의 최적 정합을 위한 ICP(Iterative Closest Point) 알고리즘 적용)

  • Lee, Jang-Hyun;Yoon, Jong-Sung;Ryu, Cheol-Ho;Lee, Hwang-Beom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.2
    • /
    • pp.129-136
    • /
    • 2009
  • Generally, curved surfaces of ship hull are deformed by flame bending (line heating), multi-press forming, and die-less forming method. The forming methods generate the required in-plane/bending strain or displacement on the flat plate to make the curved surface. Multi-press forming imposes the forced displacements on the flat plate by controlling the position of each pressing points based upon the shape difference between the unfolded flat plate and the curved object shape. The flat plate has been obtained from the unfolding system that is independent of the ship CAD. Apparently, the curved surface and the unfolded-flat surface are expressed by different coordinate systems. Therefore, one of the issues is to find a registration of the unfolded surface and the curved shape for the purpose of minimum amount of forming works by comparing the two surfaces. This paper presents an efficient algorithm to get an optimized registration of two different surfaces in the multi-press forming of ship hull plate forming. The algorithm is based upon the ICP (Iterative Closest Point) algorithm. The algorithm consists of two iterative procedures including a transformation matrix and the closest points to minimize the distance between the unfolded surface and curved surfaces. Thereby the algorithm allows the minimized forming works in ship-hull forming.

Development of Micro Metal Forming Manufacturing System (초미세 마이크로 소성성형 가공시스템 기술 개발)

  • Lee Nak-Kyu;Choi Tae-Hoon;Lee Hye-Jin;Chi Seog-Ou;Park Hoon-Jae;La Won-Ki
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.383-388
    • /
    • 2005
  • In this paper Research development about a micro metal forming manufacturing system has been developed. A micro forming system has been achieved in Japan and it's developed micro press is limited to single forming process. To coincide with the purpose to be more practical, research and development is necessary about the press which the multi forming process is possible. We set the development of the equipment including micro deep drawing, micro punching and micro restriking process to the goal. To achieve this goal, Research about micro forming process to be related to multi process forming must be preceded first. Material selection and analysis about micro forming process are accomplished in this paper. And the basis research to make actual system is accomplished.

  • PDF

Development of Micro Press for Forming the Micro Thin Foil Valve (마이크로 박판 밸브 성형을 위한 마이크로 프레스 개발)

  • Lee, Hye-Jin;Lee, Nak-Kyu;Lee, Hyoung-Wook
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.166-171
    • /
    • 2007
  • In this paper Research development about a micro metal forming manufacturing system has been developed. A micro forming system has been achieved in Japan and it's developed micro press is limited to single forming process. To coincide with the purpose to be more practical, research and development is necessary about the press which the multi forming process is possible. We set the development of the equipment including micro deep drawing, micro punching and micro restriking process to the goal. To achieve this goal, we set the application product to a micro thin foil valve which is used in the micro pump module. The compound die set has been designed and manufactured to make two step process. The material of thin foil valve is SUS-304 and its thickness is 50$\mu$m. We can get a good forming results from micro punching experiments in this paper.

A study of Double Sheet Multi-forming Equipment (2겹 판재 멀티포밍 장치에 관한 연구)

  • Yun, Jae-Woong;Son, Ok-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.49-55
    • /
    • 2017
  • Most motor cases adopt deep drawing products, which are excellent in waterproof functions, concentricity, right angle, and quality. In addition, the blower motor and seat motor, which are installed in the car interior and do not require waterproof function, adopts a multi-forming manufacturing method. The deep drawing process requires an expensive transfer press that can digest approximately 12 processes, such as drawing, trimming and piercing. On the other hand, products can be produced with low investment because the multi-forming method is composed of one multi-forming machine or one multi-forming machine and one press. The multi-forming machine is a high-priced facility that is mostly imported and a bending / shearing process multi-foaming machine, which was developed by domestic small and medium-sized enterprises, is not enough to reduce the production cost. An integral multi - forming machine is used as a limited working method for thin material and small products. A large product and thick material has a high shear load. A large product and thick material has a high shear load and uses a single crank press. After blanking, the worker manually feeds the material to a multi-forming machine. When the bending operation is performed in the multi-forming machine, it is transferred to the press again to calibrate the dimensions. This variance in work processes has resulted in lower cost competitiveness due to the lower productivity, quality issues, and excessive operator input. The aim of this study was to establish a stable and cost - effective production system through bending / shearing process separation and facility automation.

Small Electrode Ring Forming by Multi-Forming Process (멀티 성형 가공법을 활용한 전극용 소형 링 성형)

  • Yoon, Il-Chae;Ko, Tae-Jo;Lee, Chun;Kim, Hui-Sul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.38-45
    • /
    • 2009
  • Recently, LCD Backlight Unit is being replaced from cold cathode fluorescent lamp(CCFL) to external electrode fluorescent lamp(EEFL) because the EEFL has high energy efficiency and long life. Also, it can reduce energy consumption and weight. So far, external electrode ring for EEFL is produced by sheet metal press forming process. Therefore it had low precision and much material loss. To solve these problems, Multi-Forming process that has five step forming process was invented. However, low productivity is another barrier. Product speed that is controlled by the rotational speed cannot be increased due to the unsatisfied design specification. The reason is that the gap between rolled two edge parts of the sheet plate is tightly inspected. Regarding this factor, the understanding of forming behavior to each process is inevitable. This paper describes the CAE analysis of the multi-forming process by PAM-STAMP.

  • PDF

Development of The Multi Forming Type Ultra Precision Die for Sheet Metal ( Part I )- Production Part and Strip Process Layout -

  • Sim, Sung-Bo;Jang, Chan-Ho;Sung, Yul-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.253-257
    • /
    • 2001
  • This study reveals the sheet metal working with multi-forming type ultra precision process. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena, die structure, machining condition for die making, die material, heat treatment of die components, know-how and so on. In this study, we designed and constructed a multi-forming ultra precision progressive die as a bending and drawing working of multi-stage and performed through the try out for thin sheet metal. This part I of papers related to the analysis of production part and strip process layout design through the metal forming simulation by DEFORM and IDEAS.

  • PDF

A development of double-moving system for composite die using multi-axis shuttle unit in the sheet metal forming (판재성형 가공에서의 다축 단동 유닛을 이용한 복합금형용 Double-moving System 개발)

  • Kim, Dong-wook;Choi, Kyu-Kwang
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.39-43
    • /
    • 2016
  • Most of automobile parts manufactured through sheet metal forming are mass-produced by using press mold. In recent years, automation and speeding up of press lines have been expanding to maximize product productivity using a press die. The proportion of the moving time in the press line is high, and therefore requires high-speed and automated equipment for the moving process. In this paper, to provide the double-moving system can be the moving time reduction and increased productivity. Developed transport system consists of the material supply, the material feeding device and the PLC controller and the devices are positioned between each of the pressing process. In this paper, the double-moving system including developed units using a multi-axial single-acting through this reduced the C/T(cycle time) and improved the productivity.

Multi Point Press Stretch Forming System Applied to Curved Hull Plate of Aluminum Ship (알루미늄 선박의 외판 가공을 위한 인장성형 시스템 연구)

  • Bae, Chul-Nam;Hwang, Se-Yun;Lee, Jang-Hyun;Jeong, Uh-Cheul;Kim, Kwang-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.3
    • /
    • pp.188-197
    • /
    • 2012
  • Recently, aluminum ships are constructed more than ever because of the environmental pollution generated by FRP (Fiber Reinforced Plastic) ships. In particular, FRP ships have been replaced by the Aluminum ships. The forming process of the curved aluminum plate has been performed only by labor works without systematic technique. Therefore, it is difficult to construct the aluminum ship that the design satisfies both required propulsion performance and hull design. Present study introduces a MPSF (Multi Point Stretching Forming) that is a flexible manufacturing technique to form large sheet panels of doubly curvature. The hull pieces are stretch-formed over the MPSD (multi-point stretching die) generated by the punch element matrix. In this study, MPSF is applied to deform the doubly curved surfaces of aluminum ship. The forming system including FEA (finite element analysis) of the processes for stretching the plate were carried out by static implicit analysis is suggested. Residual deformation of the surface is modeled by an elasto-plastic contact phenomena while the forming process is simulated by FEA. Finally, the proposed system is also validated, comparing the deformed shape by MPSF with that of object surfaces.