• Title/Summary/Keyword: Multi-physics analyses

Search Result 16, Processing Time 0.019 seconds

Development and validation of a fast sub-channel code for LWR multi-physics analyses

  • Chaudri, Khurrum Saleem;Kim, Jaeha;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1218-1230
    • /
    • 2019
  • A sub-channel solver, named ${\underline{S}}teady$ and ${\underline{T}}ransient$ ${\underline{A}}nalyzer$ for ${\underline{R}}eactor$ ${\underline{T}}hermal$ hydraulics (START), has been developed using the homogenous model for two-phase conditions of light water reactors. The code is developed as a fast and accurate TH-solver for coupled and multi-physics calculations. START has been validated against the NUPEC PWR Sub-channel and Bundle Test (PSBT) database. Tests like single-channel quality and void-fraction for steady state, outlet fluid temperature for steady state, rod-bundle quality and void-fraction for both steady state and transient conditions have been analyzed and compared with experimental values. Results reveal a good accuracy of solution for both steady state and transient scenarios. Axially different values for turbulent mixing coefficient are used based on different grid-spacer types. This provides better results as compared to using a single value of turbulent mixing coefficient. Code-to-code evaluation of PSBT results by the START code compares well with other industrial codes. The START code has been parallelized with the OpenMP algorithm and its numerical performance is evaluated with a large whole PWR core. Scaling study of START shows a good parallel performance.

AEGIS: AN ADVANCED LATTICE PHYSICS CODE FOR LIGHT WATER REACTOR ANALYSES

  • Yamamoto, Akio;Endo, Tomohiro;Tabuchi, Masato;Sugimura, Naoki;Ushio, Tadashi;Mori, Masaaki;Tatsumi, Masahiro;Ohoka, Yasunori
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.500-519
    • /
    • 2010
  • AEGIS is a lattice physics code incorporating the latest advances in lattice physics computation, innovative calculation models and efficient numerical algorithms and is mainly used for light water reactor analyses. Though the primary objective of the AEGIS code is the preparation of a cross section set for SCOPE2 that is a three-dimensional pin-by-pin core analysis code, the AEGIS code can handle not only a fuel assembly but also multi-assemblies and a whole core geometry in two-dimensional geometry. The present paper summarizes the major calculation models and part of the verification/validation efforts related to the AEGIS code.

BEAVRS benchmark analyses by DeCART stand-alone calculations and comparison with DeCART/MATRA multi-physics coupling calculations

  • Park, Ho Jin;Kim, Seong Jin;Kwon, Hyuk;Cho, Jin Young
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1896-1906
    • /
    • 2020
  • The BEAVRS (Benchmark for Evaluation and Validation of Reactor Simulation) benchmark calculations were performed by DeCART stand-alone and DeCART/MATRA multi-physics coupled code system to verify their accuracy. The solutions of DeCART stand-alone calculations for the control rod bank worth, detector signal, isothermal temperature coefficient, and critical boron concentration agreed very well with the measurements. The root-mean-square errors of the boron letdown curves for two-cycles were less than about 20 ppm, while the individual and total control rod bank worth agreed well within 7.3% and 2.4%, respectively. For the BEAVRS benchmark calculations at the beginning of burnup, the difference between DeCART simplified thermal-hydraulic stand-alone and DeCART/MATRA coupled calculations were not significantly large. Therefore, it is concluded that both the DeCART stand-alone code and the DeCART/MATRA multi-physics coupled code system have the capabilities to generate high fidelity transport solutions at core follow calculations.

EXTENSION OF MULTI-DIMENSIONAL LIMITING PROCESS ONTO THREE-DIMENSIONAL UNSTRUCTURED GRIDS (다차원 공간 제한 기법의 3차원 비정렬 격자계로 확장)

  • Park, J.S.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.404-411
    • /
    • 2010
  • The present paper deals with the continuous work of extending multi-dimensional limiting process (MLP), which has been quite successfully proposed on two- and three-dimensional structured grids, onto the unstructured grids. The basic idea of the present limiting strategy is to control the distribution of both cell-centered and cell-vertex physical properties to mimic a multi-dimensional nature of flow physics, which can be formulated as so called the MLP condition. The MLP condition can guarantee a high-order spatial accuracy without yielding spurious oscillations. Recently, MLP slope limiter was proposed based on the MUSCL-type reconstruction in two-dimensional case and it can be readily extended to three-dimensional case. Through various numerical analyses and extensive computations, it is observed that the proposed limiters are quite effective in controlling numerical oscillations and very accurate in capturing both discontinuous and continuous multi-dimensional flow features on 3-D tetrahedral grids.

  • PDF

Modifications of mechanical, thermal, and electrical characteristics of epoxy through dispersion of multi-walled carbon nanotubes in supercritical carbon dioxide

  • Zaidi, M.G.H.;Joshi, S.K.;Kumar, M.;Sharma, D.;Kumar, A.;Alam, S.;Sah, P.L.
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.218-227
    • /
    • 2013
  • A supercritical carbon dioxide (SCC) process of dispersion of multi-walled carbon nanotubes (MWCNTs) into epoxy resin has been developed to achieve MWCNT/epoxy composites (CECs) with improved mechanical, thermal, and electrical properties. The synthesis of CECs has been executed at a MWCNT (phr) concentration ranging from 0.1 to 0.3 into epoxy resin (0.1 mol) at 1800 psi, $90^{\circ}C$, and 1500 rpm over 1 h followed by curing of the MWCNT/epoxy formulations with triethylene tetramine (15 phr). The effect of SCC treatment on the qualitative dispersion of MWCNTs at various concentrations into the epoxy has been investigated through spectra analyses and microscopy. The developed SCC assisted process provides a good dispersion of MWCNTs into the epoxy up to a MWCNT concentration of 0.2. The effects of SCC assisted dispersion at various concentrations of MWCNTs on modification of mechanical, thermal, dynamic mechanical thermal, and tribological properties and the electrical conductivity of CECs have been investigated.

FLOW PHYSICS ANALYSES USING HIGHER-ORDER DISCONTINUOUS GALERKIN-MLP METHODS ON UNSTRUCTURED GRIDS (비정렬 격자계에서 고차 정확도 불연속 갤러킨-다차원 공간 제한 기법을 이용한 유동 물리 해석)

  • Park, J.S.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.311-317
    • /
    • 2011
  • The present paper deals with the continuous works of extending the multi-dimensional limiting process (MLP) for compressible flows, which has been quite successful in finite volume methods, into discontinuous Galerkin (DG) methods. From the series of the previous, it was observed that the MLP shows several superior characteristics, such as an efficient controlling of multi-dimensional oscillations and accurate capturing of both discontinuous and continuous flow features. Mathematically, fundamental mechanism of oscillation-control in multiple dimensions has been established by satisfaction of the maximum principle. The MLP limiting strategy is extended into DG framework, which takes advantage of higher-order reconstruction within compact stencil, to capture detailed flow structures very accurately. At the present, it is observed that the proposed approach yields outstanding performances in resolving non-compressive as well as compressive flaw features. In the presentation, further numerical analyses and results are going to be presented to validate that the newly developed DG-MLP methods provide quite desirable performances in controlling numerical oscillations as well as capturing key flow features.

  • PDF

Prediction of ballooning and burst for nuclear fuel cladding with anisotropic creep modeling during Loss of Coolant Accident (LOCA)

  • Kim, Jinsu;Yoon, Jeong Whan;Kim, Hyochan;Lee, Sung-Uk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3379-3397
    • /
    • 2021
  • In this study, a multi-physics modeling method was developed to analyze a nuclear fuel rod's thermo-mechanical behavior especially for high temperature anisotropic creep deformation during ballooning and burst occurring in Loss of Coolant Accident (LOCA). Based on transient heat transfer and nonlinear mechanical analysis, the present work newly incorporated the nuclear fuel rod's special characteristics which include gap heat transfer, temperature and burnup dependent material properties, and especially for high temperature creep with material anisotropy. The proposed method was tested through various benchmark analyses and showed good agreements with analytical solutions. From the validation study with a cladding burst experiment which postulates the LOCA scenario, it was shown that the present development could predict the ballooning and burst behaviors accurately and showed the capability to predict anisotropic creep behavior during the LOCA. Moreover, in order to verify the anisotropic creep methodology proposed in this study, the comparison between modeling and experiment was made with isotropic material assumption. It was found that the present methodology with anisotropic creep could predict ballooning and burst more accurately and showed more realistic behavior of the cladding.

Relationship of the Distribution Thickness of Dielectric Layer on the Nano-Tip Apex and Distribution of Emitted Electrons

  • Al-Qudah, Ala'a M.;Mousa, Marwan S.
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.155-159
    • /
    • 2016
  • This paper analyses the relationship between the distribution of a dielectric layer on the apex of a metal field electron emitter and the distribution of electron emission. Emitters were prepared by coating a tungsten emitter with a layer of epoxylite resin. A high-resolution scanning electron microscope was used to monitor the emitter profile and measure the coating thickness. Field electron microscope studies of the emission current distribution from these composite emitters (Tungsten-Clark Electromedical Instruments Epoxylite resin [Tungsten/CEI-resin emitter]) have been carried out. Two forms of image have been observed: bright single-spot images, thought to be associated with a smooth substrate and a uniform dielectric layer; and multi-spot images, though to be associated with irregularity in the substrate or the dielectric layer.

Thermal Modeling of Comet-Like Asteroids

  • Park, Yoonsoo Bach;Ishiguro, Masateru;Usui, Fumihiko
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.81.4-82
    • /
    • 2016
  • Recent analysis on asteroidal thermophysical property revealed that there is a tendency that their thermal inertia decrease with their sizes at least for main belt asteroids. However, little is known about the thermal properties of comet-like bodies. In this work we utilized a simple thermophysical model to calculate the thermal inertia of a bare nucleus of comet P/2006 HR30 (Siding Spring) and an asteroid in comet-like orbit 4015 Wilson-Harrington from AKARI observation data. It is also shown that the determination of their thermal inertia is very sensitive to their spin vector, while the diameter is rather easy to be constrained to a certain range by combining multi-wavelength observational data. Thus, we set diameter and hence the geometric albedo as fixed parameters, and inferred the spin vector and thermal inertia of the targets. Further detailed analyses on these cometary bodies will shed light on our understanding of the detailed surfacial characteristics of them.

  • PDF

SIMP: SLICKS AS INDICATORS FOR MARINE PROCESSES

  • Mitnik, Leonid M.;Gade, Martin;Ermakov, Stanislav A.;Lavrova, Olga Yu.;Silva, Jose B.C. da;Woolf, David K.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.950-953
    • /
    • 2006
  • SIMP is an international project funded by INTAS aimed at improving the information content, which can be inferred from multi-sensor satellite imagery of marine coastal areas. Scientific teams from Germany, UK, Portugal, and Russia focus on the development of novel tools for marine remote sensing of the coastal zone. In particular, the project teams' benefit from the fact that surface films may enhance the signatures of hydrodynamic processes such as plumes, internal waves, eddies, etc., on microwave, optical, and infrared imagery. The project's objectives are to develop a robust methodology for identifying slick-related phenomena/processes through their surface signatures and thereby, to improve the discrimination capabilities between slicks and other oceanic and atmospheric phenomena by taking into account information gained from satellite imagery quasi-simultaneously recorded at microwave, visible and IR wavelengths. The results of the two project years are summarized. Examples are given for the project’s web presentation, laboratory and field experiments, and of the analyses of various satellite data.

  • PDF