• Title/Summary/Keyword: Multi-physical Design

Search Result 294, Processing Time 0.026 seconds

Steel nitriding optimization through multi-objective and FEM analysis

  • Cavaliere, Pasquale;Perrone, Angelo;Silvello, Alessio
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.71-90
    • /
    • 2016
  • Steel nitriding is a thermo-chemical process leading to surface hardening and improvement in fatigue properties. The process is strongly influenced by many different variables such as steel composition, nitrogen potential, temperature, time, and quenching media. In the present study, the influence of such parameters affecting physic-chemical and mechanical properties of nitride steels was evaluated. The aim was to streamline the process by numerical-experimental analysis allowing defining the optimal conditions for the success of the process. Input parameters-output results correlations were calculated through the employment of a multi-objective optimization software, modeFRONTIER (Esteco). The mechanical and microstructural results belonging to the nitriding process, performed with different processing conditions for various steels, are presented. The data were employed to obtain the analytical equations describing nitriding behavior as a function of nitriding parameters and steel composition. The obtained model was validated, through control designs, and optimized by taking into account physical and processing conditions.

Applying Scenarios for Designing Building Elements in the Smart Multi-family housing (지능형 아파트의 건축구성요소 디자인을 위한 시나리오 적용에 관한 연구)

  • Kim Mi-Yun;Choi Jin-Won
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.4 s.57
    • /
    • pp.73-80
    • /
    • 2006
  • As ubiquitous technology(uT) is offered in the future space, human will find their life more convenient and prosperous, and the space efficiency will be improved with virtual displays within a limited space. In an living space with ubiquitous environments, all information of family members will be an essential source creating advanced future spaces both for users and for those maintaining the space. In recent studies of uT environment, development of scenario is mostly being carried out based on user and service. It is unsatisfactory, however, when it comes to the study of how these studies can be developed on the basis of architectural space. In this paper, we study about applying scenarios created through space analysis to suggest ways to predict the analysis of the relationship between digital devices/services and the building elements based on physical space with uT and to offer services smoothly to uT environment, intelligent devices and their users.

Design of an Electrodynamic Wheel for Transfer of Conductive Rod (전도성 환봉 이송용 동전기 차륜의 설계)

  • Park, Sung-Jun;Jung, Kwang-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.251-256
    • /
    • 2011
  • Instead of multi-phase ac current, the magnetic field travels spatially through mechanical rotation of permanent magnets at the electrodynamic wheel (EDW). Traveling of magnetic field generally leads to a generation of inductive force in the traveling direction. In this paper, we suggest a spiral EDW to travel the magnetic field in the axial direction of the conductive rod. So, it is possible to levitate and transfer the rod through multi-axial forces by the spiral EDW. However, physical dimensions of permanent magnets constituting EDW influence relative ratios between three-axial forces generated on the rod. Therefore, the sensitivity analysis for design parameters is performed using FEM analysis. The stable operation is verified experimentally.

A Multi-Expression Programming Application to the Design of Planar Antennae

  • Braunstein, Jeffrey;Kim, Hyeong-Seok;Kahng, Sung-Tek
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1589-1590
    • /
    • 2006
  • A method to determine functional relationships between the variable physical dimensions of an antenna and the antenna performance characteristics is presented. By applying multi-expression programming (MEP) to this data set, optimization with regard to a given criteria can be subsequently performed on the functions instead of performing repealed electromagnetic simulations. The functionals are trained on an initial population of simulation samples and refined using a point-wise error estimate to identify design parameters for subsequent samples. Additionally, the depth of the MEP tree is adjusted for increased accuracy as the data set is deemed sufficient.

  • PDF

Development of Acoustic Target Strength Analysis System for Submarine

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Jeon, Jae-Jin;Song, Jee-Hun
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.3
    • /
    • pp.158-163
    • /
    • 2013
  • The acoustic target strength (TS) is one of the most important parameters for a submarine's stealth design. Because modem submarines are larger than their predecessors, TS must be managed at each design stage in order to reduce it. To predict the TS of a submarine, TASTRAN R1 was developed based on a Kirchhoff approximation in a high-frequency range. This program can present TS values that include multi-bounce effect in the exterior and interior of the structure by combining geometric optics (GO) and physical optics (PO) methods, anechoic coating effect by using the reflection coefficient, and response time pattern for a detected target. In this paper, TS calculations for a submarine model with the above effects are simulated by using this developed program, and the TS results are discussed.

SHAPE OPTIMIZATION OF UCAV FOR AERODYNAMIC PERFORMANCE IMPROVEMENT AND RADAR CROSS SECTION REDUCTION (공력 향상과 RCS 감소를 고려한 무인 전투기의 형상 최적설계)

  • Jo, Y.M.;Choi, S.I.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.56-68
    • /
    • 2012
  • Nowadays, Unmanned Combat Air Vehicle(UCAV) has become an important aircraft system for the national defense. For its efficiency and survivability, shape optimization of UCAV is an essential part of its design process. In this paper, shape optimization of UCAV was processed for aerodynamic performance improvement and Radar Cross Section(RCS) reduction using Multi Objective Genetic Algorithm(MOGA). Lift and induced drag, friction drag, RCS were calculated using panel method, boundary layer theory, Physical Optics(PO) approximation respectively. In particular, calculation applied Radar Absorbing Material(RAM) was performed for the additional RCS reduction. Results are indicated that shape optimization is performed well for improving aerodynamic performance, reducing RCS. Further study will be performed with higher fidelity tools and consider other design segments including structure.

Multi-Attribute Data Fusion for Energy Equilibrium Routing in Wireless Sensor Networks

  • Lin, Kai;Wang, Lei;Li, Keqiu;Shu, Lei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.5-24
    • /
    • 2010
  • Data fusion is an attractive technology because it allows various trade-offs related to performance metrics, e.g., energy, latency, accuracy, fault-tolerance and security in wireless sensor networks (WSNs). Under a complicated environment, each sensor node must be equipped with more than one type of sensor module to monitor multi-targets, so that the complexity for the fusion process is increased due to the existence of various physical attributes. In this paper, we first investigate the process and performance of multi-attribute fusion in data gathering of WSNs, and then propose a self-adaptive threshold method to balance the different change rates of each attributive data. Furthermore, we present a method to measure the energy-conservation efficiency of multi-attribute fusion. Based on our proposed methods, we design a novel energy equilibrium routing method for WSNs, viz., multi-attribute fusion tree (MAFT). Simulation results demonstrate that MAFT achieves very good performance in terms of the network lifetime.

Evaluation of the Effects of a Frailty Preventing Multi-factorial Program Concentrated on Local Communities for High-risk Younger and Older Elderly People (전.후기 허약 고위험 노인을 대상으로 한 지역사회 중심의 다요인적 허약 예방 프로그램의 효과 평가)

  • Lee, In Sook;Ko, Young;Lee, Kwang Ok;Yim, Eun Shil
    • Research in Community and Public Health Nursing
    • /
    • v.23 no.2
    • /
    • pp.201-211
    • /
    • 2012
  • Purpose: The purpose of this study is to evaluate the effects of a local community based multi-factorial program for high-risk younger and older elderly people. Methods: The quasi-experimental research design (pretest-post test) was employed. Participants were recruited in Seoul and a total of 98 elders completed an 8-week multi-factorial program for preventing frailty. Descriptive statistics, $x^2$-test and GLM were used in the data analysis with SPSS/WIN 15.0. Results: The high-risk elderly people in the younger and older stages showed differences in IADL, TUG and BMI, and after being provided with the multi-factorial program for preventing frailty, some effects were shown on improving the total score of frailty, a physical function, TUG, BMI, depression, subjective feeling of health, and social interaction. Conclusion: The 8-week multi-factorial program for preventing frailty had positive effects on improving physical, emotional and social functions of the high-risk elderly people. It is necessary to evaluate the effects after individual intervention as well as group intervention and to evaluate the effects of the program by setting a control group in the future.

Development of a Multi-body Dynamics Analysis System Using the Object-Oriented Concept (객체지향 개념을 이용한 다물체 동역학 해석 시스템 개발)

  • 한형석;이재경;서종휘;송현석;박태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.115-125
    • /
    • 2003
  • To analyze the applications of all types of mechanical systems, general purpose analysis programs have been developed and commercialized. However, it is customary to develop and use customized programs even though they sometimes require more work than a general purpose program. A customized program is simplified to adapt to a particular application from the beginning, is designed for small computers, and developed with hardware-in-the-loop in mind so it can be applied effectively. By adding design knowledge and bundling know-how to an analysis program, analysis time can be reduced. And because an analysis has to work in conjunction with other analysis programs, a proprietary program that the user can easily modify can be useful. In this thesis, a multi-body dynamics analysis system is presented using one of the most useful programming techniques, object-oriented concept. The object-oriented concept defines a problem from the physical world as an abstract object, an abstract model. The object becomes encapsulated with the data and method. Simulation is performed using the object's interface. It is then possible for the user and the developer to modify and upgrade the program without having particular knowledge of the analysis program. The method presented in this thesis has the following advantages. Since the mechanical components of the multi-body system converts independent modeling into a class, the modification, exchange, distribution, and reuse of elements are increased. It becomes easier to employ a new analysis method and interface with other S/W and H/W systems. To employ a new analysis method, there is no need to modify elements of the main solver and the Library. In addition, information can be communicated to each object through messaging. It makes the modeling of new elements easier using inheritance. When developing a S/W for the computer simulation of physical system, it is reasonable to use object-oriented modeling. Also, for multi-body dynamics analysis, it is possible to develop a solver that is user-oriented.

Optimum Design of Multi-beam Large Reflector Antenna for Satellite Payload (위성 탑재용 다중빔 대형 반사판 안테나의 최적 설계)

  • Yun, So-Hyeun;Uhm, Man-Seok;Yom, In-Bok
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.45-49
    • /
    • 2010
  • This paper presents the study on multi-beam large aperture antenna systems for a satellite payload. Multi-beam large antenna provides the universal communication and broadcasting services to personal portable terminals. The hybrid antenna composed of a large reflector and a feed array forms multi-beams. The feed cluster consists of a group of feed elements and each element should be optimized for the appropriate amplitude and phase. The optimization progress for amplitude and phase was performed by GO (Geometrical Optics) and PO (Physical Optics) method. The number of feed elements as well as the power level per element were also optimized to meet the required EIRP (Effective Isotropically Radiated Power). In conclusion, 30m-class reflector and twenty five elements for fifteen beams over Korean Peninsula were designed through the optimization process.