• Title/Summary/Keyword: Multi-phase Multi-motor Drives

Search Result 8, Processing Time 0.023 seconds

MRAS Based Sensorless Control of a Series-Connected Five-Phase Two-Motor Drive System

  • Khan, M. Rizwan;Iqbal, Atif
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.224-234
    • /
    • 2008
  • Multi-phase machines can be used in variable speed drives. Their applications include electric ship propulsion, 'more-electric aircraft' and traction applications, electric vehicles, and hybrid electric vehicles. Multi-phase machines enable independent control of a few numbers of machines that are connected in series in a particular manner with their supply being fed from a single voltage source inverter(VSI). The idea was first implemented for a five-phase series-connected two-motor drive system, but is now applicable to any number of phases more than or equal to five-phase. The number of series-connected machines is a function of the phase number of VSI. Theoretical and simulation studies have already been reported for number of multi-phase multi-motor drive configurations of series-connection type. Variable speed induction motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace the sensor, information concerning the rotor speed is extracted from measured stator currents and voltages at motor terminals. Open-loop estimators or closed-loop observers are used for this purpose. They differ with respect to accuracy, robustness, and sensitivity against model parameter variations. This paper analyses operation of an MRAS estimator based sensorless control of a vector controlled series-connected two-motor five-phase drive system with current control in the stationary reference frame. Results, obtained with fixed-voltage, fixed-frequency supply, and hysteresis current control are presented for various operating conditions on the basis of simulation results. The purpose of this paper is to report the first ever simulation results on a sensorless control of a five-phase two-motor series-connected drive system. The operating principle is given followed by a description of the sensorless technique.

Configurations of High Power VSI Drives for Traction Applications Using Multi Level Inverters and Multi Phase Induction Motors (멀티레벨 인버터와 다상 유도기를 이용한 견인기용 대전력 VSI의 구조와 특성)

  • Gopakumnr, K.;Ryu, Hong-Je;Kim, Jong-Su;Im, Geun-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.500-504
    • /
    • 1997
  • Current source inverter drives of auto sequentially commutated type are very popular in high power applications, because of simple power circuit configuration with four quadrant operation. But the six-step current output create harmonic problems and the input power factor of such a drive is not always good. In this respect pulse width modulated drives using gate turn off thyristors ( GTO ) are finding application, especially in traction drives. However the switching and snubber loses of a GTO do not permit the inverter switching frequency go beyond a few hundred hertz.This will again introduce low frequency harmonic problems. Multi level inverters of the 3-level and 5-level can be considered as an alternative to overcome the low switching frequency harmonic problem of the 2-level GTO inverters. But with multi level inverters the complexity of the power circuit increases. In this paper a combination of multi level ( 2-level and 3-level ) inverters and multi phase induction motor ( 3-phase and 6-phase) configurations are presented for high power VSI drives for traction applications with reduced inverter switching frequency requirements coupled with reduced voltage rating for the power switch.

  • PDF

A Study on the Multi-Current Source Inverter Drives (다동전류형 인버어터 구동에 관한 연구)

  • 정연택;한경희;황락훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.8
    • /
    • pp.539-546
    • /
    • 1987
  • In case of operating at Variable speed the induction motor by a frequency transformer, it will cause ripples in motor torque and considerably bad effects on the machines because the output side of the frequency transformer involves a great number of harmonics. This paper Presents the methods of decreasing torque ripples in induction motor and of improving current waveform, by means of forming the waveforms of output current into multi-step waveforms similiar to sinusoid, and also by means of eliminating the harmonic components maximally, in case of operating a 18-phase multi-inverter combining 3-step current source inverter.

  • PDF

Simulation Model of 7 Phase BLDC Motor Drives with Phase Angle Control (진상각을 갖는 7상 BLDC 전동기의 시뮬레이션 모델)

  • Kim, Hyun-Cheol;Oh, Hyung-Sik;Kim, Jang-Mok;Kim, Cheul-U
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2127-2134
    • /
    • 2007
  • The simulation model has been already developed not for 7 phase but for 3 phase BLDC motor. It is necessary to develop a new simulation model of multi-phase BLDC motor including the phase delay angle especially in the high speed region. In this paper, the suitability of the proposed model is verified through the several computer simulations, and experimented results.

3-Phase Pseudo-Random Carrier Modulation Technique for the Acoustic Noise Reduction of the 3-Phase Multi-Level Inverter Based Motor (3상 멀티 레벨 인버터 구동 유도 전동기의 소음저감을 위한 3상 준 랜덤 캐리어 변조기법)

  • Park, J.K.;Kim, J.N.;Jung, Y.G.;Lim, Y.C.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.742-745
    • /
    • 2005
  • This paper describes a simple pseudo-random carrier modulation technique for the acoustic noise reduction of the three phase multi-level inverter based motor drives. The proposed method generates a new pseudo-random carrier by randomly synthesizing a carrier with fixed frequency and a carrier with opposition phase. To confirm the validity of the proposed method, a 130v three-phase multi-level inverter was Implemented and tested. The experimental results show that the output line voltage and acoustic noise harmonics spectra of an inverter have broadening effect of harmonics, as only simple synthesis of fixed frequency carries.

  • PDF

Pseudo-Randomized Frequency Carrier Modulation Scheme with Improved Harmonics Spectra Spreading Effects (고조파 스펙트럼 확산효과를 개선한 준 랜덤 주파수 캐리어 변조기법)

  • Kim, Jong-Nam;Jung, Young-Gook;Lim, Young-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.64-70
    • /
    • 2008
  • In case that conventional PRC(Pseudo-Randomized Frequency Carrier) modulation scheme is applied to a three-phase HBML(H-Bridge Multi-Level Inverter), the dominant harmonics spectra appear at twice switching frequency. In this paper, the dominant harmonics spectra spreading effect of the conventional PRC scheme was improved by using three stage MUXs(Multiplexers) and two triangular carriers with fixed frequency which has mutual relation of the twice frequency. To confirm the validity of the improved PRC scheme, the experiment were performed on a 1.5[kw] three-phase HBML based induction motor drives. And, the harmonics spectra of the conventional and improved PRC schemes are compared and discussed.

Sensorless Drive for Mono Inverter Dual Parallel Surface Mounted Permanent Magnet Synchronous Motor Drive System (단일 인버터를 이용한 표면 부착형 영구자석 동기 전동기 병렬 구동 시스템의 센서리스 구동 방법)

  • Lee, Yongjae;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • This paper presents the sensorless drive method for mono inverter dual parallel (MIDP) surface mounted permanent magnet synchronous motor (SPMSM) drive system. MIDP motor drive system is a technique that can reduce the cost of the multi motor driving system. To maximize this merit of the MIDP motor drive system, the sensorless technique is essential to eliminate the position sensors. This paper adopts an appropriate sensorless method for MIDP SPMSM drive system, which uses the reduced order observer and phase locked loop (PLL) to reduce the calculation burden. The I-F control method is implemented for start-up and low speed operation. The validity and performance of the proposed algorithm are shown via experiments with 600-W SPMSMs.

Design Considerations for Auto-Connected Multi-Pulse Rectiviers for High Power AC Motor Drives

  • ;Prasad N. Enjeti
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.413-422
    • /
    • 1999
  • Auto-connected multipulse(12/24pulse) rectifier schemes are cost effective methods for reducing line current hamonics in PWM drive systems. Employing these schemes to enhance utility power quality requires careful attention to several design considerations In particular, excursion of dc-link voltage at no load, effect of pre-existing voltage distortion, impedance mismatches, unequal diode drops on rectifier current sharing and performance, are fully analyzed, Several corrective measures to improve the performance of 12/24­pulse rectifier systems are also discussed. Finally, experimental results on a 460V, 60Hz 400kVA commercial ASD, retrofitted with 12/24pulse rectifier systems are discussed in detail.

  • PDF