• Title/Summary/Keyword: Multi-path routing protocol

Search Result 112, Processing Time 0.025 seconds

A Cost-Aware Multi-path DSDV Routing Protocol in Wireless Mesh Networks (무선 메쉬 네트워크에서 비용 인지 다중 경로 DSDV 라우팅 프로토콜)

  • Lee, Seong-Woong;Chung, Yun-Won
    • The KIPS Transactions:PartC
    • /
    • v.15C no.4
    • /
    • pp.289-296
    • /
    • 2008
  • In wireless mesh network, studies on routing protocols have been actively carried out recently, and hop count is used as a major routing metric in destination-sequenced distance-vector (DSDV) routing protocol, which is a representative proactive routing protocol. Although hop-by-hop multi-path (HMP) DSDV and enhanced HMP (EHMP) DSDV routing protocols perform routing by considering both hop count and residual bandwidth within one hop distance nodes, it has a shortcoming that routing is carried out via non-optimal path from the aspect of end-to-end routing. In order to overcome the shortcoming, a cost-aware multi-path (CAMP) DSDV routing protocol is proposed in this paper, which considers hop count and end-to-end minimum residual bandwidth. Simulation results based on NS-2 show that the proposed routing protocol performs better than DSDV, HMP DSDV, and EHMP DSDV protocols from the aspect of throughput and packet delivery ratio, by appropriately using hop count and end-to-end minimum residual bandwidth information and has the same number of management messages with HMP DSDV and EHMP DSDV protocols.

A Multi-path Dynamic Source Routing Protocol for Mobile Ad-Hoc Networks (이동 애드 혹 네트워크를 위한 다중경로 동적 소스 라우팅 프로토콜)

  • Lim Hwa-Jung;Tscha Yeong-hwan
    • The KIPS Transactions:PartC
    • /
    • v.12C no.1 s.97
    • /
    • pp.111-120
    • /
    • 2005
  • A mobile ad-hoc network is an autonomous system of mobile nodes which are free to move around randomly and organize themselves arbitrarily, hence a routing protocol that handles the dynamic network topology changes is required for the network. In this paper we present a multi -Path on-demand routing protocol called R-DSR (Robust Dynamic Source Routing), an extension to the existing IETF protocol DSR. The proposed protocol has it that every pair of 2-hop away nodes on the single route is additionally connected via an alternative node. Throughout mathematical analysis we show the proposed protocol reveals higher message delivery rate than that of the Das's multi-path protocol, currently known as one of the most typical approaches related to DSR.

CAMR: Congestion-Aware Multi-Path Routing Protocol for Wireless Mesh Networks

  • Jang, Seowoo;Kang, Seok-Gu;Yoon, Sung-Guk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.411-419
    • /
    • 2017
  • The Wireless Mesh Network (WMN) is a multi-hop wireless network consisting of mesh routers and clients, where the mesh routers have minimal mobility and form the backbone. The WMN is primarily designed to access outer network to mesh clients through backhaul gateways. As traffic converges on the gateways, traffic hotspots are likely to form in the neighborhood of the gateways. In this paper, we propose Congestion Aware Multi-path Routing (CAMR) protocol to tackle this problem. Upon congestion, CAMR divides the clients under a mesh STA into two groups and returns a different path for each group. The CAMR protocol triggers multi-path routing in such a manner that the packet reordering problem is avoided. Through simulations, we show that CAMR improves the performance of the WMN in terms of throughput, delay and packet drop ratio.

Associativity-Based On-Demand Multi-Path Routing In Mobile Ad Hoc Networks

  • Rehman, Shafqat Ur;Song, Wang-Cheol;Park, Gyung-Leen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.5
    • /
    • pp.475-491
    • /
    • 2009
  • This paper is primarily concerned with multi-path routing in Mobile Ad hoc Networks (MANETs). We propose a novel associativity-based on-demand source routing protocol for MANETs that attempts to establish relatively stable path(s) between the source and the destination. We introduce a new notion for gauging the temporal and spatial stability of nodes, and hence the paths interconnecting them. The proposed protocol is compared with other unipath (DSDV and AODV) and multi-path (AOMDV) routing protocols. We investigate the performance in terms of throughput, normalized routing overhead, packet delivery ratio etc. All on-demand protocols show good performance in mobile environments with less traffic overhead compared to proactive approaches, but they are prone to longer end-to-end delays due to route discovery and maintenance.

Interference Aware Multipath Routing in Multi-rate Wireless Sensor Networks

  • Lee, Kang Gun;Park, Hyung Kun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.8
    • /
    • pp.909-914
    • /
    • 2015
  • In wireless sensor networks, sensor nodes have a short transmission range and data is transferred from source to destination node using the multi-hop transmission. Sensor nodes are powered by battery and the link qualities are different, and the routing protocol in the wireless sensor network is one of the important technical issues. Multipath routing was proposed to reduce the data congestion and increase data throughput. In the multipath routing, however, each path can be interfered by the other path, and it can aggravate network performance. In this paper, we propose the multipath routing scheme for multi-rate wireless sensor networks. The multipath routing selects transmission paths to minimize transmission delay and path interference.

An Optimized Node-Disjoint Multi-path Routing Protocol for Multimedia Data Transmission over Wireless Sensor Network (무선 센서 네트워크에서의 멀티미디어 데이터 전송을 위한 최적의 노드 비 겹침 다중경로 탐색 프로토콜)

  • Jung, Sung-Rok;Lee, Jeong-Hoon;Roh, Byeong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1021-1033
    • /
    • 2008
  • In recent years, the growing interest in wireless sensor network has resulted in thousands of publications. Most of this research is concerned with delivering raw data such as temperature, pressure, or humidity. Recently, the focus of sensor network paradigm is changing for delivering multimedia contents. However, most existing routing protocols are not very practical for transmitting multimedia contents in resource constrained sensor networks. In this paper, we propose an optimized node-disjoint multi-path routing protocol for throughput enhancement and load balancing. We focused on how to allocate traffic to independent multiple end-to-end routes. Decentralized transmission using our node-disjoint multi-path routing scheme results in bandwidth aggregation and throughput enhancement. In addition, our scheme provides ways to remove link-joint routes for decreasing routing overhead.

Multi-Path DSDV Routing Protocol using Bypass Information in Wireless Mesh Network (무선메쉬 네트워크에서 우회정보를 이용한 다중경로 DSDV 라우팅기법)

  • Lee, Do-Yup;Kim, Jung-Gyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.3
    • /
    • pp.157-167
    • /
    • 2010
  • One of the most famous proactive routing protocols, DSDV (Destination -Sequenced Distance-Vector), is based on the minimum hop count. This paper suggests BIMP(Bypass Information Multi-Path) DSDV routing protocol that this protocol could route reliably as it can take the information of the bypass for the solution of the problem on EHMP DSDV. In this paper, the protocol checks throughput, packet delivery delay, packet delivery ratio, number of management messages, packet transmit finish time, etc on the traffic compared to DSDV, HMP DSDV, and EHMP DSDV protocols.

Service Discovery Scheme for Wireless Ad-hoc Networks (무선 애드-혹 네트워크를 위한 효율적인 서비스 검색 기법)

  • Kim, Moon-Jeong;Lee, Dong-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.245-250
    • /
    • 2008
  • Efficient service discovery mechanism is a crucial feature for the usability of a wireless ad-hoc network. A wireless ad-hoc network is a temporal network formed by a collection of wireless mobile nodes without the aid of any existing network infrastructure or centralized administration. We propose an efficient service discovery mechanism using non-disjoint multi-path routing protocol for a wireless ad-hoc network. Our scheme has advantages of not only multi-path routing protocol but also cross-layer service discovery. By simulation, we showed that faster route recovery is possible by maintaining multiple routing paths in each node, and the route maintenance overhead can be reduced by limiting the number of multiple routing paths and by maintaining link/node non-disjoint multi-path.

Cross-Layer Service Discovery Scheme for Hybrid Ad-hoc Networks (하이브리드 애드-혹 네트워크를 위한 크로스-레이어 서비스 검색 기법)

  • Kim, Moon-Jeong;Eom, Young-Ik
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.223-228
    • /
    • 2009
  • Efficient service discovery mechanism is a crucial feature for a hybrid ad-hoc network supporting extension of a wireless ad-hoc network to the Internet. We propose an efficient cross-layer service discovery mechanism using non-disjoint multi-path source routing protocol for hybrid ad-hoc networks. Our scheme has advantages of multi-path routing protocol and cross-layer service discovery. Intuitively, it is not difficult to imagine that the cross-layer service discovery mechanism could result in a decreased number of messages compared to the traditional approach for handling routing independently from service discovery. By simulation, we show that faster route recovery is possible by maintaining multiple routing paths in each node, and the route maintenance overhead can be reduced by limiting the number of multiple routing paths and by maintaining link/node non-disjoint multi-path.

Transient Multipath routing protocol for low power and lossy networks

  • Lodhi, Muhammad Ali;Rehman, Abdul;Khan, Meer Muhammad;Asfand-e-yar, Muhammad;Hussain, Faisal Bashir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2002-2019
    • /
    • 2017
  • RPL routing protocol for low-power and lossy networks is an Internet Engineering Task Force (IETF) recommended IPv6 based protocol for routing over Low power Lossy Networks (LLNs). RPL is proposed for networks with characteristics like small packet size, low bandwidth, low data rate, lossy wireless links and low power. RPL is a proactive routing protocol that creates a Directed Acyclic Graph (DAG) of the network topology. RPL is increasingly used for Internet of Things (IoT) which comprises of heterogeneous networks and applications. RPL proposes a single path routing strategy. The forwarding technique of RPL does not support multiple paths between source and destination. Multipath routing is an important strategy used in both sensor and ad-hoc network for performance enhancement. Multipath routing is also used to achieve multi-fold objectives including higher reliability, increase in throughput, fault tolerance, congestion mitigation and hole avoidance. In this paper, M-RPL (Multi-path extension of RPL) is proposed, which aims to provide temporary multiple paths during congestion over a single routing path. Congestion is primarily detected using buffer size and packet delivery ratio at forwarding nodes. Congestion is mitigated by creating partially disjoint multiple paths and by avoiding forwarding of packets through the congested node. Detailed simulation analysis of M-RPL against RPL in both grid and random topologies shows that M-RPL successfully mitigates congestion and it enhances overall network throughput.