• Title/Summary/Keyword: Multi-objective optimal design

Search Result 305, Processing Time 0.023 seconds

Minimization of wind load on setback tall building using multiobjective optimization procedure

  • Bairagi, Amlan Kumar;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.157-175
    • /
    • 2022
  • This paper highlights the minimization of drag and lift coefficient of different types both side setback tall buildings by the multi-objective optimization technique. The present study employed 48 number both-side setback models for simulation purposes. This study adopted three variables to find the two objective functions. Setback height and setback distances from the top of building models are considered variables. The setback distances are considered between 10-40% and setback heights are within 6-72% from the top of the models. Another variable is wind angles, which are considered from 0° to 90° at 15° intervals according to the symmetry of the building models. Drag and lift coefficients according to the different wind angles are employed as the objective functions. Therefore 336 number population data are used for each objective function. Optimum models are compared with computational simulation and found good agreements of drag and lift coefficient. The design wind angle variation of the optimum models is considered for drag and lift study on the main square model. The drag and lift data of the square model are compared with the optimum models and found the optimized models are minimizing the 45-65% drag and 25-60% lift compared to the initial square model.

Application of Parameter-setting Free Method for Multi-objective Optimal Design of Water Distribution Systems (상수관망 다목적 최적설계를 위한 매개변수 자동보정 기법의 적용)

  • Choi, Young Hwan;Lee, Ho Min;Yoo, Do Guen;Choi, Ji Ho;Kim, Joong Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.209-209
    • /
    • 2015
  • 상수도 관망은 대표적인 사회기반시설로 수원으로부터 수용가에 이르기까지 안정적으로 유량을 공급하는 것을 목표로 한다. 상수도 관망의 최적설계는 요구되는 절점의 수압, 관로의 유속 등 수리학적 제약조건을 만족시키는 범위 안에서 비용을 최소화하는 설계안을 얻어내는 것을 목표로 시작하였다. 하지만 비용만을 고려한 과거의 상수도 관망 최적설계는 미래의 불확실한 조건에 매우 취약하고, 사용자의 다양한 요구를 충족시키지 못한다. 이 때문에 현대의 상수도 관망의 설계시 다양한 설계인자의 고려와 함께 효율적인 최적설계기법 적용의 필요성이 대두되고 있다. 따라서 본 연구에서는 상수도 관망 최적설계에 다양한 설계인자를 동시에 고려하기 위해 다목적 최적 설계기법인 Multi-objective Harmony Search 알고리즘을 적용하였다. 또한 다목적 최적설계의 효율성 증대를 위하여 매개변수 자동보정 기법 중 하나인 Parameter-Setting-Free (PSF) 기법(Geem and Sim, 2010)을 사용하였다. PSF 기법은 최적화 알고리즘의 매개변수 설정의 번거로움을 없애고, 반복수행을 통한 해 탐색이 진행됨에 따라 가장 효율적으로 작용하는 매개변수를 자동으로 설정하여 탐색효율을 강화하도록 고안된 기법이다. 본 연구에서는 제안된 기법을 실제 상수도관망의 최적설계에 적용하였고 그 결과를 분석하였다. 그 결과 제안된 기법을 통해 관망의 비용을 포함한 다양한 설계인자를 동시에 만족시키는 최적설계안을 효과적으로 도출 할 수 있었으며, 매개변수 자동보정 기법의 적용을 통해 해 탐색의 효율성과 편의성을 향상시킬 수 있었다.

  • PDF

Shape Design of Micro Electrostatic Actuator using Multidimensional Design Windows (다차원 설계윈도우 탐색법을 이용한 마이크로 액추에이터 형상설계)

  • Jeong, Min-Jung;Kim, Yeong-Jin;Daisuke Ishihara;Yoshimura, Shinobu;Yagawa, Genki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1796-1801
    • /
    • 2001
  • For micro-machines, very few design methodologies based on optimization hale been developed so far. To overcome the difficulties of design optimization of micro-machines, the search method for multi-dimensional design window (DW)s is proposed. The proposed method is defined as areas of satisfactory design solutions in a design parameter space, using both continuous evolutionary algorithms (CEA) and the modified K-means clustering algorithm . To demonstrate practical performance of the proposed method, it was applied to an optimal shape design of micro electrostatic actuator of optical memory. The shape design problem has 5 design parameters and 5 objective functions, and finally shows 4 specific design shapes and design characters based on the proposed DWs.

Optimal Shape Design of Dual Reflector Antenna Based on Genetic Algorithm (유전 알고리즘 기반의 이중 반사경 안테나 형상최적화 기법)

  • Park, Jung-Geun;Chung, Young-Seek;Kang, Won-June;Shin, Jin-Woo;So, Joon-Ho;Cheon, Chang-Yul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.445-454
    • /
    • 2015
  • In this paper, we propose an optimal design method for a dual reflector antenna(DRA) using the Genetic algorithm. In order to reduce the computational burden during the optimal design, we exploit the iterative physical optics(IPO) to calculate the surface current distribution at each reflector antenna. To improve the accuracy, we consider the shadow effect by the structure and the coupling effect by the multi-reflection based on the iterative MFIE(Magnetic Field Integral Equation). To reduce the number of design variables and generate a smooth surface, we use the Bezier function with the control points, which become the design variables in this paper. We adopt the HPBW(Half Power Beam Width), the FNBW(First Null Beam Width), and the SLL(Side Lobe Level) as the objective or cost functions. To verify the results, we compare them with the those of the commercial tool.

Optimal LAN Design Using a Pareto Stratum-Niche Cubicle Genetic Algorithm (PS-NC GA를 이용한 최적 LAN 설계)

  • Choi, Kang-Hee;Jung, Kyoung-Hee
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.3
    • /
    • pp.539-550
    • /
    • 2005
  • The spanning tree, which is being used the most widely in indoor wiring network, is chosen for the network topology of the optimal LAN design. To apply a spanning tree to GA, the concept of $Pr\ddot{u}fer$ numbers is used. $Pr\ddot{u}fer$ numbers can express he spanning tree in an efficient and brief way, and also can properly represent the characteristics of spanning trees. This paper uses Pareto Stratum-Niche Cubicle(PS-NC) GA by complementing the defect of the same priority allowance in non-dominated solutions of pareto genetic algorithm(PGA). By applying the PS-NC GA to the LAN design areas, the optimal LAN topology design in terms of minimizing both message delay time and connection-cost could be accomplished in a relatively short time. Numerical analysis has been done for a hypothetical data set. The results show that the proposed algorithm could provide better or good solutions for the multi-objective LAN design problem in a fairly short time.

  • PDF

Integrated Design of Feed Drive Systems Using Discrete 2-D.O.F. Controllers (II) -Formulation and Synthesis of Integrated Design- (이산형 2자유도 제어기를 이용한 이송계의 통합설계 (II) -통합설계의 정식화와 해석-)

  • Kim, Min-Seok;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1038-1046
    • /
    • 2004
  • In order to acquire high-speed and high-precision performances in servomechanisms, an integrated design method have been proposed. Based on strict mathematical modeling and analysis of system performance according to design and operating parameters, a nonlinear constrained optimization problem including the relevant subsystem parameters of the servomechanism is formulated. Optimum design results of mechanical and electrical parameters are obtained according to the design parameters specified by designers through the integrated design processes. Motors are optimally selected from the servo motor database. Both the geometric errors referring to Abbe offset and the contour errors are minimized while required constraints such as stability conditions and saturated conditions are satisfied. This design methodology both offers the improved possibility to evaluate and optimize the dynamic motion performance of the servomechanism and improves the quality of the design process to achieve the required performance for high-speed/precision servomechanisms.

A Study on the Optimal Limit State Design of Reinforced Concrete Flat Slab-Column Structures (한계상태설계법(限界狀態設計法)에 의한 철근(鐵筋)콘크리트 플래트 슬라브형(型) 구조체(構造體)의 최적화(最適化)에 관한 연구(研究))

  • Park, Moon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.11-26
    • /
    • 1984
  • The aim of this study is to establish a synthetical optimal method that simultaneously analyze and design reinforced concrete flat slab-column structures involving multi-constraints and multi-design variables. The variables adopted in this mathematical models consist of design variables including sectional sizes and steel areas of frames, and analysis variable of the ratio of bending moment redistribution. The cost function is taken as the objective function in the formulation of optimal problems. A number of constraint equations, involving the ultimate limit state and the serviceability limit state, is derived in accordance with BSI CP110 requirements on the basis of limit state design theory. Both objective function and constraint equations derived from design variables and an analysis variable generally become high degree nonlinear problems. Using SLP as an analytical method of nonlinear optimal problems, an optimal algorithm is developed so as to analyze and design the structures considered in this study. The developed algorithm is directly applied to a few reinforced concrete flat slab-column structures to assure the validity of it and the possibility of optimization From the research it is found that the algorithm developed in this study is applicable to the optimization of reinforced concrete flat slab column structures and it converges to a optimal solution with 4 to 6 iterations regardless of initial variables. The result shows that an economical design can be possible when compared with conventional designs. It is also found that considering the ratio of bending moment redistribution as a variable is reasonable. It has a great effect on the composition of optimal sections and the economy of structures.

  • PDF

Evaluation of Surrogate Models for Shape Optimization of Compressor Blades

  • Samad, Abdus;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.367-370
    • /
    • 2006
  • Performances of multiple surrogate models are evaluated in a turbomachinery blade shape optimization. The basic models, i.e., Response Surface Approximation, Kriging and Radial Basis Neural Network models as well as weighted average models are tested for shape optimization. Global data based errors for each surrogates are used to calculate the weights. These weights are multiplied with the respective surrogates to get the final weighted average models. The design points are selected using three level fractional factorial D-optimal designs. The present approach can help address the multi-objective design on a rational basis with quantifiable cost-benefit analysis.

  • PDF

Reviews of Bus Transit Route Network Design Problem (버스 노선망 설계 문제(BTRNDP)의 고찰)

  • Han, Jong-Hak;Lee, Seung-Jae;Lim, Seong-Su;Kim, Jong-Hyung
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.35-47
    • /
    • 2005
  • This paper is to review a literature concerning Bus Transit Route Network Design(BTRNDP), to describe a future study direction for a systematic application for the BTRNDP. Since a bus transit uses a fixed route, schedule, stop, therefore an approach methodology is different from that of auto network design problem. An approach methodology for BTRNDP is classified by 8 categories: manual & guideline, market analysis, system analytic model. heuristic model. hybrid model. experienced-based model. simulation-based model. mathematical optimization model. In most previous BTRNDP, objective function is to minimize user and operator costs, and constraints on the total operator cost, fleet size and service frequency are common to several previous approach. Transit trip assignment mostly use multi-path trip assignment. Since the search for optimal solution from a large search space of BTRNDP made up by all possible solutions, the mixed combinatorial problem are usually NP-hard. Therefore, previous researches for the BTRNDP use a sequential design process, which is composed of several design steps as follows: the generation of a candidate route set, the route analysis and evaluation process, the selection process of a optimal route set Future study will focus on a development of detailed OD trip table based on bus stop, systematic transit route network evaluation model. updated transit trip assignment technique and advanced solution search algorithm for BTRNDP.

A Study on the Optimization Strategy using Permanent Magnet Pole Shape Optimization of a Large Scale BLDC Motor (대용량 BLDC 전동기의 영구자석 형상 최적화를 통한 최적화 기법 연구)

  • Woo, Sung-Hyun;Shin, Pan-Seok;Oh, Jin-Seok;Kong, Yeong-Kyung;Bin, Jae-Goo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.897-903
    • /
    • 2010
  • This paper presents a response surface method(RSM) with Latin Hypercube Sampling strategy, which is employed to optimize a magnet pole shape of large scale BLDC motor to minimize the cogging torque. The proposed LHS algorithm consists of the multi-objective Pareto optimization and (1+1) evolution strategy. The algorithm is compared with the uniform sampling point method in view points of computing time and convergence. In order to verify the developed algorithm, a 6 MW BLDC motor is simulated with 4 design parameters (arc length and 3 variables for magnet) and 4 constraints for minimizing of the cogging torque. The optimization procedure has two stages; the fist is to optimize the arc length of the PM and the second is to optimize the magnet pole shape by using the proposed hybrid algorithm. At the 3rd iteration, an optimal point is obtained, and the cogging torque of the optimized shape is converged to about 14% of the initial one. It means that 3 iterations aregood enough to obtain the optimal design parameters in the program.