• 제목/요약/키워드: Multi-objective

검색결과 2,137건 처리시간 0.026초

2 계층 공생 진화알고리듬을 이용한 다목적 최적화 (Multi-objective optimization using a two-leveled symbiotic evolutionary algorithm)

  • 신경석;김여근
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2006년도 추계학술대회
    • /
    • pp.573-576
    • /
    • 2006
  • This paper deals with multi-objective optimization problem of finding a set of well-distributed solutions close to the true Pareto optimal solutions. In this paper, we present a two-leveled symbiotic evolutionary algorithm to efficiently solve the problem. Most of the existing multi-objective evolutionary algorithms (MOEAs) operate one population that consists of individuals representing the complete solution to the problem. The proposed algorithm maintains several populations, each of which represents a partial solution to the entire problem, and has a structure with two levels. The parallel search and the structure are intended to improve the capability of searching diverse and good solutions. The performance of the proposed algorithm is compared with those of the existing algorithms in terms of convergence and diversity. The experimental results confirm the effectiveness of the proposed algorithm.

  • PDF

다목적 유전자 알고리즘을 이용한 SVC와 외부 리액터/커패시터 뱅크의 헙조 제어 (Coordination of SVC and External Reactor/Capacitor Banks Using Multi-objective)

  • 박종영;이상호;박종근;손광명;이송근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.233-235
    • /
    • 2000
  • SVC(Static Var Compensator) is commonly installed with conventional mechanically switched existing reactor or capacitor banks for wide range voltage control. The frequencies of switching of external banks have a great impact on the quality of voltage, but is limited since the life time of the external banks depends severely on the number of switching. So it is a complete multi-objective nonlinear optimization problem with conflicting objectives. This paper presents a method to determine the optimal coordination of SVC and external banks using genetic algorithm based on the multi-objective criteria. Optimal dead band and delay time of external banks is sought for reliable and efficient operation

  • PDF

다목적 유전자 알고리즘을 이용한 상수관망에서 스프링 서지 완화 밸브의 최적화 (Optimum design of direct spring loaded pressure relief valve in water distribution system using multi-objective genetic algorithm)

  • 김현준;백다원;김상현
    • 상하수도학회지
    • /
    • 제32권2호
    • /
    • pp.115-122
    • /
    • 2018
  • Direct spring loaded pressure relief valve(DSLPRV) is a safety valve to relax surge pressure of the pipeline system. DSLPRV is one of widely used safety valves for its simplicity and efficiency. However, instability of the DSLPRV can caused by various reasons such as insufficient valve volume, natural vibration of the spring, etc. In order to improve reliability of DSLPRV, proper selection of design factors of DSLPRV is important. In this study, methodology for selecting design factors for DSLPRV was proposed. Dynamics of the DSLPRV disk was integrated into conventional 1D surge pressure analysis. Multi-objective genetic algorithm was also used to search optimum design factors for DSLPRV.

다목적 최적화를 이용한 비행제어계 설계 자동화 (Automated flight control system design using multi-objective optimization)

  • 류혁;탁민제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1296-1299
    • /
    • 1996
  • This paper proposes a design automation method for the flight control system of an aircraft based on optimization. The control system design problem which has many specifications is formulated as multi-objective optimization problem. The solution of this optimization problem should be considered in terms of Pareto-optimality. In this paper, we use an evolutionary algorithm providing numerous Pareto-optimal solutions. These solutions are given to a control system designer and the most suitable solution is selected. This method decreases tasks required to determine the control parameters satisfying all specifications. The design automation of a flight control system is illustrated through an example.

  • PDF

계수조건부 LMI를 이용한 다목적 제어기 설계 (Multi-Objective Controller Design using a Rank-Constrained Linear Matrix Inequality Method)

  • 김석주;김종문;천종민;권순만
    • 제어로봇시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.67-71
    • /
    • 2009
  • This paper presents a rank-constrained linear matrix inequality (LMI) approach to the design of a multi-objective controller such as $H_2/H_{\infty}$ control. Multi-objective control is formulated as an LMI optimization problem with a nonconvex rank condition, which is imposed on the controller gain matirx not Lyapunov matrices. With this rank-constrained formulation, we can expect to reduce conservatism because we can use separate Lyapunov matrices for different control objectives. An iterative penalty method is applied to solve this rank-constrained LMI optimization problem. Numerical experiments are performed to illustrate the proposed method.

Multi-Objective Design Optimization of Composite Stiffened Panel Using Response Surface Methodology

  • Murugesan, Mohanraj;Kang, Beom-Soo;Lee, Kyunghoon
    • Composites Research
    • /
    • 제28권5호
    • /
    • pp.297-310
    • /
    • 2015
  • This study aims to develop efficient composite laminates for buckling load enhancement, interlaminar shear stress minimization, and weight reduction. This goal is achieved through cover-skin lay-ups around skins and stiffeners, which amplify bending stiffness and defer delamination by means of effective stress distribution. The design problem is formulated as multi-objective optimization that maximizes buckling load capability while minimizing both maximum out-of-plane shear stress and panel weight. For efficient optimization, response surface methodology is employed for buckling load, two out-of-plane shear stresses, and panel weight with respect to one ply thickness, six fiber orientations of a skin, and four stiffener heights. Numerical results show that skin-covered composite stiffened panels can be devised for maximum buckling load and minimum interlaminar shear stresses under compressive load. In addition, the effects of different material properties are investigated and compared. The obtained results reveal that the composite stiffened panel with Kevlar material is the most effective design.

실험계획법과 순차적 반응표면법을 이용한 선형 모터의 다중 목적 형상최적설계 (Multi-Objective Geometric Optimal Design of a Linear Induction Motor Using Design of Experiments and the Sequential Response Surface Method)

  • 류태형;유정훈
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.726-732
    • /
    • 2009
  • In many industries, the linear motor replaces the existing framework for linear transportation. Similar to other conventional motors, it is important to minimize the ripple of thrust and to maximize the thrust force of the linear motor. Because the two objectives are associated to each other, the multi-objective design process is necessary considering all objectives. This paper intends to optimize geometric parameters of the linear motor with two design objectives using design of experiments and sequential response surface method.

NSGA-II를 이용한 마이크로 프로펠러 수차 블레이드 최적화 (Optimization of Micro Hydro Propeller Turbine blade using NSGA-II)

  • 김병곤
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.19-29
    • /
    • 2014
  • In addition to the development of micro hydro turbine, the challenge in micro hydro turbine design as sustainable hydro devices is focused on the optimization of turbine runner blade which have decisive effect on the turbine performance to reach higher efficiency. A multi-objective optimization method to optimize the performance of runner blade of propeller turbine for micro turbine has been studied. For the initial design of planar blade cascade, singularity distribution method and the combination of the Bezier curve parametric technology is used. A non-dominated sorting genetic algorithm II(NSGA II) is developed based on the multi-objective optimization design method. The comparision with model test show that the blade charachteristics is optimized by NSGA-II has a good efficiency and load distribution. From model test and scale up calculation, the maximum prototype efficiency of the runner blade reaches as high as 90.87%.

다목적 유전알고리듬을 이용한 시스템 분해 기법 (A System Decomposition Technique Using A Multi-Objective Genetic Algorithm)

  • 박형욱;김민수;최동훈
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.499-506
    • /
    • 2003
  • The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to determine the best order of the processes within these subcycles to reduce design cycle time and cost. This is accomplished by decomposing large multidisciplinary problems into several sub design structure matrices (DSMs) and processing them in parallel This paper proposes a new method for parallel decomposition of multidisciplinary problems to improve design efficiency by using the multi-objective genetic algorithm and two sample test cases are presented to show the effect of the suggested decomposition method.

Design Optimization of a High Specific Speed Francis Turbine Using Multi-Objective Genetic Algorithm

  • Nakamura, Kazuyuki;Kurosawa, Sadao
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권2호
    • /
    • pp.102-109
    • /
    • 2009
  • A design optimization system for Francis turbine was developed. The system consists of design program and CFD solver. Flow passage shapes are optimized automatically by using the system with Multi-Objective Genetic Algorithm (MOGA). In this study, the system was applied to a high specific speed Francis turbine (nSP = 250m-kW). The runner profile and the draft tube shape were optimized to decrease hydraulic losses. As the results, it was shown that the turbine efficiency was improved in wide operating range, furthermore, the height of draft tube was reduced with the hydraulic performance kept.