• Title/Summary/Keyword: Multi-network

Search Result 4,612, Processing Time 0.034 seconds

TDMA based Multi-channel MAC Protocol for Improving Channel Efficiency in Wireless Ad Hoc Networks (무선 애드혹 네트워크에서 채널 효율성 향상을 위한 TDMA 기반의 멀티채널 MAC 프로토콜)

  • Kim, Jun-Ho;Choi, Jae-Kark;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.153-164
    • /
    • 2010
  • In this paper, we propose a multi-channel MAC protocol to improve the channel efficiency and network performance in wireless ad hoc networks. There are two main problems encountered in designing multi-channel MAC protocols. The first problem is the rendezvous problem and the second is multi-channel hidden node problem. In order to solve these problems, most of previous researches that have considered multi-channel MAC protocols use a common control channel to exchange control packets. However, they have a bottleneck problem at common control channel as increasing the number of data channels. The proposed MAC protocol solves the multi-channel hidden node problem using a TDMA scheme and increases the network throughput because transmitting and receiving data at the same time is possible. Also, since there is no common control channel, the network does not suffer from the common control channel saturation problem. Moreover, it achieves energy savings by allowing nodes that are not involved in communication to go into sleep mode. Simulation results show that the proposed MAC protocol improves the network throughput and channel efficiency and provides energy savings.

Multi-layer restoration strategy to restore the multi-link and node failures in DCS mesh networks (DCS mesh 네트워크에서 다중 선로 장애와 노드 장애를 복구하기 위한 다중 계층 복구 전략)

  • 김호진;조규섭;이원문
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2744-2754
    • /
    • 1997
  • Recently, the Multi-Layer Restoration(MLR) algorithm was proposed by British Telecom(BT) to restore the network failures in Digital Cross-connect System(DCS) mesh survival network[1, 2]. This algorithm has multi restoration stage which is composed of the pre-planned and dynamic restoration. This algorithm is effective its ability in link or node failures. This reason is that it does not restore in the pre-planned rstoration stage but in dynamic restoration stage. In this paper, we propose the MLR with pre-planned Multi-Chooser(PMC) and successive restoration ratio algorithm. This proposed algorithm has a excellent performance for restortion time and ratio, spare channel availability and fast restoration from multiple link failure or node failure. This paper proposed the modeling and restoration algorithm, and analyzed the performance of the algorithm by simulation using OPNET(OPtimized Network Engineering Tools).

  • PDF

Performance Analysis of HDR-WPAN System under Indoor Radio Channel (실내 무선채널에서 HDR-WPAN 시스템의 성능 분석)

  • Gang, Cheol-Gyu;O, Chang-Heon
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.277-283
    • /
    • 2005
  • In this paper, the performance of high data rate-wirelesss personal area network(HDR-WPAN) system is analyzed under multi-path indoor channel. In the analysis, Saleh and Valenzuel channel model is used for the multi-path indoor channel. From the results, HDR-WPAN system has reliability of 10-5 at Eb/No = 18.5dB in multi-path indoor channel. It is a suitable performance for high data rate personal area network applications.

  • PDF

An Efficient Method for Improving the Reliability of Sensing Data Using Multi-sensors in Wireless Sensor Network Systems (다중센서를 이용한 무선센서네트워크시스템에서의 효율적인 측정데이터 신뢰성 향상 방법)

  • Lee, Sang-Shin;Song, Min-Hwan;Won, Kwang-Ho;Kim, Joong-Hwan
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.3
    • /
    • pp.116-121
    • /
    • 2009
  • A novel method for improving the reliability of sensing data using multi-sensors in wireless sensor network systems is presented in this paper. This method is successfully applied a fog monitoring system in the mountain area.

  • PDF

Reliability Evaluation on Multi-State Flow Network

  • Lee, Seung-Min;Lee, Chong-Hyung;Park, Dong-Ho
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.119-124
    • /
    • 2002
  • We consider a multi-state flow network consisted of undirected links and focus on how to find efficiently the union of minimal paths transmitting a required flow when minimal paths are known.

  • PDF

Development of an IoT Platform for Ocean Observation Buoys

  • Kim, Si Moon;Lee, Un Hyun;Kwon, Hyuk Jin;Kim, Joon-Young;Kim, Jeongchang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • In this paper, we propose an Internet of Things (IoT) platform for ocean observation buoys. The proposed system consists of various sensor modules, a gateway, and a remote monitoring site. In order to integrate sensor modules with various communications interfaces, we propose a controller area network (CAN)-based sensor data packet and a protocol for the gateway. The proposed scheme supports the registration and management of sensor modules so as to make it easier for the buoy system to manage various sensor modules. Also, in order to extend communication coverage between ocean observation buoys and the monitoring site, we implement a multi-hop relay network based on a mesh network that can provide greater communication coverage than conventional buoy systems. In addition, we verify the operation of the implemented multi-hop relay network by measuring the received signal strength indication between buoy nodes and by observing the collected data from the deployed buoy systems via our monitoring site.

Destination-Based Network Coding Capable Node Determination in Multi-hop Wireless Networks (멀티홉 무선망에서 목적지 기반 네트워크 코딩 가능 노드 결정)

  • Ahn, Sanghyun;Tamir, Ganzorig
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.389-392
    • /
    • 2017
  • Previously, PCC and RFCC were proposed for the network coding possibility test of flow-intersecting nodes in a multi-hop wireless network. PCC works correctly only if there is only one intersecting node. RFCC solves this problem by defining the network coding conditions with considering decoding possibility at intermediate nodes. However, this may increase decoding possibility test overhead and coding operations at intermediate nodes. In this paper, we define DCC which can decrease this overhead by allowing decoding only at destinations. We analyze the performance of DCC by simulations.

NETWORK-ADAPTIVE ERROR CONTROL FOR VIDEO STREAMING OVER WIRELESS MULTI-HOP NETWORKS

  • Bae, Jung-Tae;Kim, Jong-Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.385-389
    • /
    • 2009
  • Multi-hop wireless mesh networks (WMNs) suffer from significant packet losses due to insufficient available bandwidth and high channel error probability. To conquer packet losses, end-to-end (E2E) error control schemes have been proposed. However, in WMNs, E2E error control schemes are not effective in adapting to the time-varying network condition due to large delay. Thus, in this paper, we propose a network-adaptive error control for video streaming over WMNs that flexibly operates E2E and hop-by-hop (HbH) error control according to network condition. Moreover, to provide lightweight support at intermediate nodes for HbH error control, we use path-partition-based adaptation. To verify the proposed scheme, we implement it and evaluate its transport performance through MPEG-2 video streaming over a real IEEE 802.11a-based WMN testbed.

  • PDF

Systems Biology - A Pivotal Research Methodology for Understanding the Mechanisms of Traditional Medicine

  • Lee, Soojin
    • Journal of Pharmacopuncture
    • /
    • v.18 no.3
    • /
    • pp.11-18
    • /
    • 2015
  • Objectives: Systems biology is a novel subject in the field of life science that aims at a systems' level understanding of biological systems. Because of the significant progress in high-throughput technologies and molecular biology, systems biology occupies an important place in research during the post-genome era. Methods: The characteristics of systems biology and its applicability to traditional medicine research have been discussed from three points of view: data and databases, network analysis and inference, and modeling and systems prediction. Results: The existing databases are mostly associated with medicinal herbs and their activities, but new databases reflecting clinical situations and platforms to extract, visualize and analyze data easily need to be constructed. Network pharmacology is a key element of systems biology, so addressing the multi-component, multi-target aspect of pharmacology is important. Studies of network pharmacology highlight the drug target network and network target. Mathematical modeling and simulation are just in their infancy, but mathematical modeling of dynamic biological processes is a central aspect of systems biology. Computational simulations allow structured systems and their functional properties to be understood and the effects of herbal medicines in clinical situations to be predicted. Conclusion: Systems biology based on a holistic approach is a pivotal research methodology for understanding the mechanisms of traditional medicine. If systems biology is to be incorporated into traditional medicine, computational technologies and holistic insights need to be integrated.

An amplify-and-forward relaying scheme based on network coding for Deep space communication

  • Guo, Wangmei;Zhang, Junhua;Feng, Guiguo;Zhu, Kaijian;Zhang, Jixiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.670-683
    • /
    • 2016
  • Network coding, as a new technique to improve the throughput, is studied combined with multi-relay model in this paper to address the challenges of long distance and power limit in deep space communication. First, an amplify-and-forward relaying approach based on analog network coding (AFNC) is proposed in multi-relay network to improve the capacity for deep space communication system, where multiple relays are introduced to overcome the long distance link loss. The design of amplification coefficients is mathematically formulated as the optimization problem of maximizing SNR under sum-power constraint over relays. Then for a dual-hop relay network with a single source, the optimal amplification coefficients are derived when the multiple relays introduce non-coherent noise. Through theoretic analysis and simulation, it is shown that our approach can achieve the maximum transmission rate and perform better over single link transmission for deep space communication.