• 제목/요약/키워드: Multi-modal Biometric Recognition

검색결과 8건 처리시간 0.021초

Steganography based Multi-modal Biometrics System

  • Go, Hyoun-Joo;Chun, Myung-Geun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권2호
    • /
    • pp.148-153
    • /
    • 2007
  • This paper deals with implementing a steganography based multi-modal biometric system. For this purpose, we construct a multi-biometrics system based on the face and iris recognition. Here, the feature vector of iris pattern is hidden in the face image. The recognition system is designed by the fuzzy-based Linear Discriminant Analysis(LDA), which is an expanded approach of the LDA method combined by the theory of fuzzy sets. Furthermore, we present a watermarking method that can embed iris information into face images. Finally, we show the advantages of the proposed watermarking scheme by computing the ROC curves and make some comparisons recognition rates of watermarked face images with those of original ones. From various experiments, we found that our proposed scheme could be used for establishing efficient and secure multi-modal biometric systems.

Steganography based Multi-modal Biometrics System

  • Go, Hyoun-Joo;Moon, Dae-Sung;Moon, Ki-Young;Chun, Myung-Geun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권1호
    • /
    • pp.71-76
    • /
    • 2007
  • This paper deals with implementing a steganography based multi-modal biometric system. For this purpose, we construct a multi-biometrics system based on the face and iris recognition. Here, the feature vector of iris pattern is hidden in the face image. The recognition system is designed by the fuzzy-based Linear Discriminant Analysis(LDA), which is an expanded approach of the LDA method combined by the theory of fuzzy sets. Furthermore, we present a watermarking method that can embed iris information into face images. Finally, we show the advantages of the proposed watermarking scheme by computing the ROC curves and make some comparisons recognition rates of watermarked face images with those of original ones. From various experiments, we found that our proposed scheme could be used for establishing efficient and secure multi-modal biometric systems.

균등화 및 분류기에 따른 다중 생체 인식 시스템의 성능 평가 (Performance Evaluation of Multimodal Biometric System for Normalization Methods and Classifiers)

  • 고현주;우나영;신용녀;김재성;김학일;전명근
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권4호
    • /
    • pp.377-388
    • /
    • 2007
  • 본 연구는 다중 생체 인식 기법을 이용하여 개인 확인 및 인증을 구현한 것으로, 단일생체인식 에서 많이 사용되어 지고 있는 생체 정보 중 얼굴과 지문, 홍채를 이용하여 상호 비교하고 구현하였다. 이를 위한 결합방식으로 단일 생체인식에서 얻은 유사도를 이용하는 방식인 유사도 단계에서의 결합방식을 적용하였으며, 이때의 각 유사도가 동일한 범위가 되도록 하는 여러 가지 균등화 방법에 대하여 연구하였다. 결합방법으로는 가중치 합, Support Vector Machine, Fisher 분류기, 베이시안 분류기를 사용하여 비교하였다. 다양한 실험결과, 사용되는 다중생체인식 조합에 따라 우수한 성능을 보이는 균등화 방법 및 분류기가 다르게 나타남을 알 수 있었다.

다중생체인식 기법을 이용한사용자 인식률 향상 (Improvement of User Recognition Rate using Multi-modal Biometrics)

  • 금명환;이규원;이봉환
    • 한국정보통신학회논문지
    • /
    • 제12권8호
    • /
    • pp.1456-1462
    • /
    • 2008
  • 단일 생체인식 시스템의 인식률을 높이는 것은 생체인식 방법마다 취약점이 있기 때문에 그 한계가 있기 마련이다. 얼굴 인식의 경우 조명과 같은 환경적 요인으로 인식률이 저하될 수 있으며, 화자 확인의 경우도 잡음과 같은 환경적 요인으로 인식률이 크게 저하될 수 있다. 따라서 두 가지 이상의 생체특징을 결합하여 다중 생체인식 시스템을 구현함으로써 그 취약점을 보완하는 추세에 있다. 본 논문에서는 얼굴 인식과 화자 확인 시스템을 결합하여 다중 생체인식 시스템을 구현하였고, 일반적인 가중치합 알고리즘에 환경 변수를 적용하여 기존의 다중 생체 인식 시스템보다 인식률을 향상시켰다. 본 시스템은 비밀키 기반의 애플릿으로 구현되어 있으므로 웹 상의 사용자 인증을 필요로 하는 응용에 활용될 수 있다.

임베디드 직렬 다중 생체 인식 시스템 개발에 관한 연구 (A Study on the Development of Embedded Serial Multi-modal Biometrics Recognition System)

  • 김정훈;권순량
    • 한국지능시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.49-54
    • /
    • 2006
  • 현재의 지문 인식 시스템은 지문 패턴의 복제와 지문 특징점의 해킹이라는 불안한 요소가 잠재되어 있어, 시스템 오동작의 주요 원인이 되기도 한다. 이에 본 논문에서는 신체의 일부인 지문을 주 핵심 인식기로 사용하고, 여기에 최근 널리 이용 되고 있는 화자 인증을 이용하여 직렬 형태의 다중 생체인식 시스템을 구현하였다. 구현된 시스템은 다중생체인식시스템으로 먼저 음성에 대한 인증과정이 성공하면 지문에 대한 인식과정을 수행하는 구조로 되어있다. 또한 효율적인 실시간 인증 처리를 위해 기존의 음성 인식 알고리즘 중에서 화자 종속형인 DTW(Dynamic Time Waning) 알고리즘을 사용하였으며, 지문 인식 알고리즘으로는 계산량을 고려하여 인공지능 기법인 KSOM(Kohonen Self-Organizing feature Map) 알고리즘을 적용하였다. 본 논문에서 구현한 다중생체 인식시스템을 실험한 결과 지문과 음성을 각각 이용한 단일인식시스템보다 본인거부율은 $2\~7\%$정도 떨어졌지만, 인식시스템에서 가장 중요한 요소인 타인수락율은 전혀 발생하지 않음을 확인하였다. 아울러 인식테스트 시간 또한 기존의 단일 생체 인식 시스템과 차이가 거의 없었으며, 인식에 걸린 시간은 평균 1.5초 정도였다. 이에 구현된 다중 생체 인의 시스템은 여러 가지 실험 결과 단일 인식 시스템보다 더 효율적인 보안 시스템임을 증명하였다.

KSOM을 이용한 다중생체 인식시스템에 관한 연구 (Implementation of Embedded System for Multi-modal Biometric Recognition using KSOM)

  • 김재완;이상배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.91-94
    • /
    • 2006
  • 본 논문은 생체인식시스템에서 단일시스템의 각각의 특징을 바탕으로 신뢰성을 증가시키는 것에 있다. 간단하면서 높은 인식률을 가지는 지문과 개개인의 음성을 다중생체인식에 활용하여 다중생체인식 시스템을 구현 하였다. 화자인식부에서는 DSP를 이용하여 화자인식을 수행하고, 이후 지문인식부에서 지문 특징점을 추출하여 KSOM신경망 알고리즘을 이용하여 인식을 수행하였다. 그리고 각 인식부의 전체적인 제어는 ATmega16L을 사용하였다. 또한 인증결과를 PC에 MFC로 디스플레이 한다.

  • PDF

얼굴의 다중특징을 이용한 인증 시스템 구현 (A study on the implementation of identification system using facial multi-modal)

  • 정택준;문용선
    • 한국정보통신학회논문지
    • /
    • 제6권5호
    • /
    • pp.777-782
    • /
    • 2002
  • 본 연구는 인식의 정확성을 향상시키고, 사용자의 편이성을 고려하여 단일생체 인식 대신에 얼굴의 다중특징을 이용하는 다중생체 인식방법을 제안한다. 얼굴의 특징은 다음과 같은 방법으로 찾는다. 얼굴의 특징은 웨이블렛 다중분해와 주성분 분석방법으로 계산하였고, 입술의 경우는 입술의 경계를 구한후 최소 자승법을 이용한 방정식의 계수를 구하였으며, 얼굴의 요소간 거리 비율에 의한 특징값을 구하여, 역전파 학습 알고리즘으로 분류하여 실험하였다. 실험을 통해 본 방법의 유효성을 확인하였다.

휴대폰 환경에서의 근적외선 얼굴 및 홍채 다중 인식 연구 (A Study on Multi-modal Near-IR Face and Iris Recognition on Mobile Phones)

  • 박강령;한송이;강병준;박소영
    • 전자공학회논문지CI
    • /
    • 제45권2호
    • /
    • pp.1-9
    • /
    • 2008
  • 휴대폰에서 보안 필요성이 증가함에 따라 개인 인증을 위하여 홍채, 지문, 얼굴과 같은 단일 생체 정보를 이용한 많은 연구들이 진행되었으나 단일 생체 인식에서는 인식 정확도에 한계가 있었다. 따라서 본 논문에서는 휴대폰 환경에서 고 인식율을 위해 얼굴과 홍채를 결합하는 방법에 대해 제안한다. 본 논문에서는 근적외선 조명과 근적외선 통과 필터를 부착한 휴대폰의 메가 픽셀 카메라를 사용하여 근적외선 얼굴 및 홍채 영상을 동시에 취득한 후, SVM(Support Vector Machine)을 기반으로 스코어 레벨에서 결합하였다. 또한, 저 연산의 로가리듬(Logarithm) 알고리즘을 사용한 얼굴 데이터의 조명 변화에 대한 정규화와 극 좌표계 변환 및 홍채 코드의 비트 이동 매칭에 의한 홍채 영역의 이동, 회전, 확대 및 축소에 대한 정규화를 통해 SVM의 분류 복잡도와 얼굴, 홍채 데이터의 본인 변화도를 최소화함으로써 인식 정확도를 향상시켰으며, 저 연산의 휴대폰 환경에서 정수혈 기반의 얼굴 및 홍채 인식 알고리즘을 사용하여 처리시간을 향상시켰다. 실험 결과, SVM을 사용한 인식의 정확성이 단일 생체(얼굴 또는 홍채), SUM, MAX, MIN 그리고 Weighted SUM을 사용하는 것보다 우수한 것을 알 수 있었다.