• Title/Summary/Keyword: Multi-modal Biometric Recognition

Search Result 8, Processing Time 0.019 seconds

Steganography based Multi-modal Biometrics System

  • Go, Hyoun-Joo;Chun, Myung-Geun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.148-153
    • /
    • 2007
  • This paper deals with implementing a steganography based multi-modal biometric system. For this purpose, we construct a multi-biometrics system based on the face and iris recognition. Here, the feature vector of iris pattern is hidden in the face image. The recognition system is designed by the fuzzy-based Linear Discriminant Analysis(LDA), which is an expanded approach of the LDA method combined by the theory of fuzzy sets. Furthermore, we present a watermarking method that can embed iris information into face images. Finally, we show the advantages of the proposed watermarking scheme by computing the ROC curves and make some comparisons recognition rates of watermarked face images with those of original ones. From various experiments, we found that our proposed scheme could be used for establishing efficient and secure multi-modal biometric systems.

Steganography based Multi-modal Biometrics System

  • Go, Hyoun-Joo;Moon, Dae-Sung;Moon, Ki-Young;Chun, Myung-Geun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.71-76
    • /
    • 2007
  • This paper deals with implementing a steganography based multi-modal biometric system. For this purpose, we construct a multi-biometrics system based on the face and iris recognition. Here, the feature vector of iris pattern is hidden in the face image. The recognition system is designed by the fuzzy-based Linear Discriminant Analysis(LDA), which is an expanded approach of the LDA method combined by the theory of fuzzy sets. Furthermore, we present a watermarking method that can embed iris information into face images. Finally, we show the advantages of the proposed watermarking scheme by computing the ROC curves and make some comparisons recognition rates of watermarked face images with those of original ones. From various experiments, we found that our proposed scheme could be used for establishing efficient and secure multi-modal biometric systems.

Performance Evaluation of Multimodal Biometric System for Normalization Methods and Classifiers (균등화 및 분류기에 따른 다중 생체 인식 시스템의 성능 평가)

  • Go, Hyoun-Ju;Woo, Na-Young;Shin, Yong-Nyuo;Kim, Jae-Sung;Kim, Hak-Il;Chun, Myung-Geun
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.4
    • /
    • pp.377-388
    • /
    • 2007
  • In this paper, we propose a multi-modal biometric system based on face, iris and fingerprint recognition system. To effectively aggregate two systems, we use statistical distribution models based on matching values for genuine and impostor, respectively. And then, We performed reveal fusion algorithms including weighted summation, Support Vector Machine(SVM), Fisher discriminant analysis, Bayesian classifier. From the various experiments, we found that the performance of multi-modal biometric system was influenced with the normalization methods and classifiers.

Improvement of User Recognition Rate using Multi-modal Biometrics (다중생체인식 기법을 이용한사용자 인식률 향상)

  • Geum, Myung-Hwan;Lee, Kyu-Won;Lee, Bong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1456-1462
    • /
    • 2008
  • In general, it is known a single biometric-based personal authentication has limitation to improve recognition rate due to weakness of individual recognition scheme. The recognition rate of face recognition system can be reduced by environmental factor such as illumination, while speaker verification system does not perform well with added surrounding noise. In this paper, a multi-modal biometric system composed of face and voice recognition system is proposed in order to improve the performance of the individual authentication system. The proposed empirical weight sum rule based on the reliability of the individual authentication system is applied to improve the performance of multi-modal biometrics. Since the proposed system is implemented using JAVA applet with security function, it can be utilized in the field of user authentication on the generic Web.

A Study on the Development of Embedded Serial Multi-modal Biometrics Recognition System (임베디드 직렬 다중 생체 인식 시스템 개발에 관한 연구)

  • Kim, Joeng-Hoon;Kwon, Soon-Ryang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.49-54
    • /
    • 2006
  • The recent fingerprint recognition system has unstable factors, such as copy of fingerprint patterns and hacking of fingerprint feature point, which mali cause significant system error. Thus, in this research, we used the fingerprint as the main recognition device and then implemented the multi-biometric recognition system in serial using the speech recognition which has been widely used recently. As a multi-biometric recognition system, once the speech is successfully recognized, the fingerprint recognition process is run. In addition, speaker-dependent DTW(Dynamic Time Warping) algorithm is used among existing speech recognition algorithms (VQ, DTW, HMM, NN) for effective real-time process while KSOM (Kohonen Self-Organizing feature Map) algorithm, which is the artificial intelligence method, is applied for the fingerprint recognition system because of its calculation amount. The experiment of multi-biometric recognition system implemented in this research showed 2 to $7\%$ lower FRR (False Rejection Ratio) than single recognition systems using each fingerprints or voice, but zero FAR (False Acceptance Ratio), which is the most important factor in the recognition system. Moreover, there is almost no difference in the recognition time(average 1.5 seconds) comparing with other existing single biometric recognition systems; therefore, it is proved that the multi-biometric recognition system implemented is more efficient security system than single recognition systems based on various experiments.

Implementation of Embedded System for Multi-modal Biometric Recognition using KSOM (KSOM을 이용한 다중생체 인식시스템에 관한 연구)

  • Kim, Jae-Wan;Lee, Sang-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.91-94
    • /
    • 2006
  • 본 논문은 생체인식시스템에서 단일시스템의 각각의 특징을 바탕으로 신뢰성을 증가시키는 것에 있다. 간단하면서 높은 인식률을 가지는 지문과 개개인의 음성을 다중생체인식에 활용하여 다중생체인식 시스템을 구현 하였다. 화자인식부에서는 DSP를 이용하여 화자인식을 수행하고, 이후 지문인식부에서 지문 특징점을 추출하여 KSOM신경망 알고리즘을 이용하여 인식을 수행하였다. 그리고 각 인식부의 전체적인 제어는 ATmega16L을 사용하였다. 또한 인증결과를 PC에 MFC로 디스플레이 한다.

  • PDF

A study on the implementation of identification system using facial multi-modal (얼굴의 다중특징을 이용한 인증 시스템 구현)

  • 정택준;문용선
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.777-782
    • /
    • 2002
  • This study will offer multimodal recognition instead of an existing monomodal bioinfomatics by using facial multi-feature to improve the accuracy of recognition and to consider the convenience of user . Each bioinfomatics vector can be found by the following ways. For a face, the feature is calculated by principal component analysis with wavelet multiresolution. For a lip, a filter is used to find out an equation to calculate the edges of the lips first. Then by using a thinning image and least square method, an equation factor can be drawn. A feature found out the facial parameter distance ratio. We've sorted backpropagation neural network and experimented with the inputs used above. Based on the experimental results we discuss the advantage and efficiency.

A Study on Multi-modal Near-IR Face and Iris Recognition on Mobile Phones (휴대폰 환경에서의 근적외선 얼굴 및 홍채 다중 인식 연구)

  • Park, Kang-Ryoung;Han, Song-Yi;Kang, Byung-Jun;Park, So-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • As the security requirements of mobile phones have been increasing, there have been extensive researches using one biometric feature (e.g., an iris, a fingerprint, or a face image) for authentication. Due to the limitation of uni-modal biometrics, we propose a method that combines face and iris images in order to improve accuracy in mobile environments. This paper presents four advantages and contributions over previous research. First, in order to capture both face and iris image at fast speed and simultaneously, we use a built-in conventional mega pixel camera in mobile phone, which is revised to capture the NIR (Near-InfraRed) face and iris image. Second, in order to increase the authentication accuracy of face and iris, we propose a score level fusion method based on SVM (Support Vector Machine). Third, to reduce the classification complexities of SVM and intra-variation of face and iris data, we normalize the input face and iris data, respectively. For face, a NIR illuminator and NIR passing filter on camera are used to reduce the illumination variance caused by environmental visible lighting and the consequent saturated region in face by the NIR illuminator is normalized by low processing logarithmic algorithm considering mobile phone. For iris, image transform into polar coordinate and iris code shifting are used for obtaining robust identification accuracy irrespective of image capturing condition. Fourth, to increase the processing speed on mobile phone, we use integer based face and iris authentication algorithms. Experimental results were tested with face and iris images by mega-pixel camera of mobile phone. It showed that the authentication accuracy using SVM was better than those of uni-modal (face or iris), SUM, MAX, NIN and weighted SUM rules.