• Title/Summary/Keyword: Multi-modal 법

Search Result 56, Processing Time 0.026 seconds

Methodology for Estimation of Link Travel Time using Density-based Disaggregated Approach (밀도기반 비집계 접근법을 이용한 구간통행시간 추정 방법론)

  • Chang, Hyunho;Lee, Soong-bong;Han, Donghee;Lee, Young-Ihn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.5
    • /
    • pp.134-143
    • /
    • 2017
  • In the case of highway, there may be a large number of travel time groups when there are a bus exclusive lane, a rest area, a sleeping shelter, etc. in the corresponding section. In most of the conventional travel time estimation studies, one representative travel time (assuming normal distribution) group is assumed in the low sample collection state, and if it is out of the specified range, it is determined as outliers and then the travel time is estimated. However, if there is a bus exclusive lane, a rest area, or a sleeping shelter in the relevant section, such as the highway, the distribution of travel time will be in the form of a bi-modal or a multi-modal, rather than a regular distribution. Therefore, applying the existing estimation methodology may result in distorted results. To solve this problem, first, it should be reliable even in the case of insufficient number of samples. Second, we propose a methodology to select the representative time group among a number of time groups and to estimate the representative time using individual time data of the selected time group.

Fully Automatic Liver Segmentation Based on the Morphological Property of a CT Image (CT 영상의 모포러지컬 특성에 기반한 완전 자동 간 분할)

  • 서경식;박종안;박승진
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.70-76
    • /
    • 2004
  • The most important work for early detection of liver cancer and decision of its characteristic and location is good segmentation of a liver region from other abdominal organs. This paper proposes a fully automatic liver segmentation algorithm based on the abdominal morphology characteristic as an easy and efficient method. Multi-modal threshold as pre-processing is peformed and a spine is segmented for finding morphological coordinates of an abdomen. Then the liver region is extracted using C-class maximum a posteriori (MAP) decision and morphological filtering. In order to estimate results of the automatic segmented liver region, area error rate (AER) and correlation coefficients of rotational binary region projection matching (RBRPM) are utilized. Experimental results showed automatic liver segmentation obtained by the proposed algorithm provided strong similarity to manual liver segmentation.

  • PDF

A Study on the Vibration Analysis and Optimization for the Composite Optical Structure of an Aircraft (복합재료를 적용한 항공기용 카메라 구조 경량화 설계 및 최적조건 선정에 관한 연구)

  • Kim, Byeong-Jun;Lee, Jun-Ho;Lee, Haeng-Bok;Jung, Dae-Yoon;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.230-235
    • /
    • 2012
  • This paper presents the vibration characteristics and the optimization using the orthogonal array about applied composite optical structure of an aircraft. To acquire the vibration characteristics for stable line of sight, modal analysis are performed by using multi-body program ADAMS. And to optimize optical structure, for design variables were selected, larger-the-better characteristics were considered using results of S/N ratio and orthogonal array $L_9(3^4)$. When bearing constraints are selected, radial, axial and moment stiffness value are used to analysis for optimization until now. But B.S.R which is non-dimensional parameter is proposed, structures including bearings can be used for optimization. And then having a result of lager-the-better, the optimized values of each design variable were successfully suggested.

Optimum Welding Position between Shell and Cylinder based on SEA (SEA를 이용한 셸과 실린더의 최적 용접 조건)

  • 이장우;양보석;안병하
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.370-376
    • /
    • 2004
  • The overall aim of this paper is to determine coupling loss factor of welding point between shell and cylinder using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it ispossible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one way (uni-directional) power flow between multi-sub structures. Using these conditions, it is possible to find the equation of coupling loss factor expressed as above two loss factors. To check the effectiveness of above equation, this paper used two-stage application. The first approach was application between simple cylinder and shell. The next was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure

An Improved Substructure Synthesis Method for Unbalance Response Analysis of Rotor Bearing Systems (회전체 베어링계의 불균형 응답 해석을 위한 개선된 부분 구조 합성법)

  • 홍성욱;박종혁
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.71-82
    • /
    • 1996
  • The finite element analysis for rotor bearing systems has been an essential tool for design, identification, and diagnosis of rotating machinery. Among others, the unbalance response analysis is fundamental in the vibration analysis of rotor bearing systems because rotating unbalance is recognized as a common sourve of vibration in rotating machinery. However there still remains a problem in the aspect of computational efficiency for unbalance response analysis of large rotor bearing systems. Gyroscopic terms and local bearing parameters in rotor bearing systems often make matters worse in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and/or anisotropy. The present paper proposes an efficient method for unbalance responses of multi-span rotor bearing systems. An improved substructure synthesis scheme is introduced which makes it possible to compute unbalance responses of the system by coupling unbalance responses of substructures that are of self adjoint problem with small order matrices. The present paper also suggests a scheme to easily deal with gyroscopic tems and local, coupling or bearing parameters. The proposed method causes no errors even though the computational effort is reduced drastically. The present method is demonstrated through three test examples.

  • PDF

Function Optimization and Event Clustering by Adaptive Differential Evolution (적응성 있는 차분 진화에 의한 함수최적화와 이벤트 클러스터링)

  • Hwang, Hee-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.451-461
    • /
    • 2002
  • Differential evolution(DE) has been preyed to be an efficient method for optimizing real-valued multi-modal objective functions. DE's main assets are its conceptual simplicity and ease of use. However, the convergence properties are deeply dependent on the control parameters of DE. This paper proposes an adaptive differential evolution(ADE) method which combines with a variant of DE and an adaptive mechanism of the control parameters. ADE contributes to the robustness and the easy use of the DE without deteriorating the convergence. 12 optimization problems is considered to test ADE. As an application of ADE the paper presents a supervised clustering method for predicting events, what is called, an evolutionary event clustering(EEC). EEC is tested for 4 cases used widely for the validation of data modeling.

The Probabilistic Production Simulation with Energy Limited Units Using the Mixture of Cumulants Approximation (에너지 제약을 갖는 발전기를 고려한 경우의 Mixture of Cumulants Approximation법에 의한 발전시뮬레이션에 관한 연구)

  • 송길영;김용하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.12
    • /
    • pp.1195-1202
    • /
    • 1991
  • This paper describes a newly developed method of production simulation by using the Mixture of Cumulant Approximation (MOCA). In this method, the load is modelled as random variable (r.v.) which can be interpreted in terms of partitioning the load into various categories. We can consider the load shape of multi-modal characteristics. The number of load category and demarcation points of each load category are calculated automatically by using interpolation and least square method. Each generating unit of a supply system is modelled as r.v. of unit outage capacity according to the number of unit outage subset. Since the computation burden of each subset's moments increases exponentially as units are convolved to the system, we further derive the specific recursive formulae. In simulating the energy limited units, hydro unit simulation is performed using Energy Invariance Property and the simulation of pumped storage unit is modelled as compulsory and economic operations. The proposed MOCA method is applide to the test systems and the results are compared with those of cumulant and Booth Baleriaux method. It is verified that the MOCA method is considerably reliable and stable both pathological and well behaved system.

A Bio-Edutainment System to Virus-Vaccine Discovery based on Collaborative Molecular in Real-Time with VR

  • Park, Sung-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.109-117
    • /
    • 2020
  • An edutainment system aims to help learners to recognize problems effectively, grasp and classify important information needed to solve the problems and convey the contents of what they have learned. Edutainment contents can be usefully applied to education and training in the both scientific and industrial areas. Our present work proposes an edutainment system that can be applied to a drug discovery process including virtual screening by using intuitive multi-modal interfaces. In this system, a stereoscopic monitor is used to make three-dimensional (3D) macro-molecular images, with supporting multi-modal interfaces to manipulate 3D models of molecular structures effectively. In this paper, our system can easily solve a docking simulation function, which is one of important virtual drug screening methods, by applying gaming factors. The level-up concept is implemented to realize a bio-game approach, in which the gaming factor depends on number of objects and users. The quality of the proposed system is evaluated with performance comparison in terms of a finishing time of a drug docking process to screen new inhibitors against target proteins of human immunodeficiency virus (HIV) in an e-drug discovery process.

Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations (토목관련 천부층 조사에서 다중 모드 표면파 역산의 효과)

  • Feng Shaokong;Sugiyama Takeshi;Yamanaka Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.26-33
    • /
    • 2005
  • Inversion of multi-mode surface-wave phase velocity for shallow engineering site investigation has received much attention in recent years. A sensitivity analysis and inversion of both synthetic and field data demonstrates the greater effectiveness of this method over employing the fundamental mode alone. Perturbation of thickness and shear-wave velocity parameters in multi-modal Rayleigh wave phase velocities revealed that the sensitivities of higher modes: (a) concentrate in different frequency bands, and (b) are greater than the fundamental mode for deeper parameters. These observations suggest that multi-mode phase velocity inversion can provide better parameter discrimination and imaging of deep structure, especially with a velocity reversal, than can inversion of fundamental mode data alone. An inversion of the theoretical phase velocities in a model with a low velocity layer at 20 m depth can only image the soft layer when the first higher mode is incorporated. This is especially important when the lowest measurable frequency is only 6 Hz. Field tests were conducted at sites surveyed by borehole and PS logging. At the first site, an array microtremor survey, often used for deep geological surveying in Japan, was used to survey the soil down to 35 m depth. At the second site, linear multichannel spreads with a sledgehammer source were recorded, for an investigation down to 12 m depth. The f-k power spectrum method was applied for dispersion analysis, and velocities up to the second higher mode were observed in each test. The multi-mode inversion results agree well with PS logs, but models estimated from the fundamental mode alone show f large underestimation of the depth to shallow soft layers below artificial fill.

Analysis of Ride Comfort for an Automobile with flexible Vehicle Body (차체의 유연성을 고려한 차량 승차감 해석)

  • Kim Junghoon;Choi Kwangsung;Park Sungyong;Lee Jangmoo;Kang Sangwook;Kang Juseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.121-128
    • /
    • 2005
  • In most researches on the ride comfort analysis of passenger vehicles, the flexibility of the vehicle body has been not considered as an important factor, because the resonance frequencies of the vehicle body related to pitching, yawing and rolling motions are below 10Hz while the resonance frequencies of the vehicle body related to the flexibility are above 20Hz approximately. Nevertheless, the paper shows that the consideration of the local flexibility (or local stiffness) of the 4 corners on which shock absorbers are mounted influences the ride comfort. A simple beam model is devised to qualitatively examine the effect of the change of the local stiffness of the vehicle body on the ride comfort. Based on the results obtained from the analysis of the one-dimensional model, multi-body dynamic analysis considering the flexibility of the vehicle body is performed using ADAMS and MSC/NASTRAN. Natural frequencies and mode shapes computed by MSC/NASTRAN are used as input data for multi-body dynamic analysis in ADAMS. Through simulations using ADAMS, it has been found that the ride comfort can be improved by changing the local stiffness of the vehicle body and that the simulation results agree with experiment results.