• Title/Summary/Keyword: Multi-material structure

Search Result 532, Processing Time 0.035 seconds

Conceptual design study on Plutonium-238 production in a multi-purpose high flux reactor

  • Jian Li;Jing Zhao;Zhihong Liu;Ding She;Heng Xie;Lei Shi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.147-159
    • /
    • 2024
  • Plutonium-238 has always been considered as the one of the promising radioisotopes for space nuclear power supply, which has long half-life, low radiation protection level, high power density, and stable fuel form at high temperatures. The industrial-scale production of 238Pu mainly depends on irradiating solid 237NpO2 target in high flux reactors, however the production process faces problems such as large fission loss and high requirements for product quality control. In this paper, a conceptual design study of producing 238Pu in a multi-purpose high flux reactor was evaluated and analyzed, which includes a sensitivity analysis on 238Pu production and a further study on the irradiation scheme. It demonstrated that the target structure and its location in the reactor, as well as the operation scheme has an impact on 238Pu amount and product quality. Furthermore, the production efficiency could be improved by optimizing target material concentration, target locations in the core and reflector. This work provides technical support for irradiation production of 238Pu in high flux reactors.

A Study on the Multi-row Progressive Die for Thin Sheet Metal Forming by Computer Simulation

  • Sim, Sung-Bo;Kim, Chung-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.75-80
    • /
    • 2008
  • The progressive die performs a work of sheet metal processes with a piercing, notching, embossing, bending, drawing, cut-off etc. in many kinds of pressing. Now a days, these processes have been evaluated as a advanced tooling method to increase the productivity and high quality assurance. The first step analyzing of die design is production part review, then the arrangement drawing of product design and strip process layout design should be done as a next steps with a FEM simulation for its problem solution. After upper procedure were peformed, it was started to make the die, then tryout and its revision of the die and product quality, safety, productivity etc. were done continually. For the all of these process, we mobilized the theory and practice of sheet metal forming, die structure, the function and activity of die components, and the others of die machining, die material, heat treatment and know‐how so on. In this study the features of representative are production part analyzing through the FEM simulation of bending area with a considering spring back problem by DEFORM.

  • PDF

Design of the Current Segment Coil for Accelerating the Magnetic Materials (자성물질을 가속시키기 위한 전류 Segment 코일의 설계)

  • Chung, Byung-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.861-866
    • /
    • 2012
  • The distance optimizing between coil and magnetic materials never be specified in the magnetic materials acceleration using the coil till now. We can know to be the distance which optimizes when being in the half position about the distance of intercoil by the result of the max point on the Differential calculus. Whether several top and bottom current segment coil structures were made and the steel ball in which the current segment coil structure is the magnetic materials could be accelerated in the optimizing distance or not confirmed. When the coil valley current about the mass of the steel ball was known as the experiment and it was but to be the nose consequently it applied to the magnetic materials and magnetic fluid, the optimal distance was solved between the coil and material.

X-ray Sensitivity of Hybrid-type Sensor based on CaWO4-Selenium for Digital X-ray Imager

  • Park, Ji-Koon;Park, Jang-Yong;Kang, Sang-Sik;Lee, Dong-Gil;Kim, Jae-Hyung;Nam, Sang-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.133-137
    • /
    • 2004
  • The development of digital x-ray detector has been extensively progressed for the application of various medical modalities. In this study, we introduce a new hybrid-type x-ray detector to improve problems of a conventional direct or indirect digital x-ray image technology, which composed of multi-layer structure using a CaWO$_4$ phosphor and amorphous selenium (a-Se) photoconductor. The leakage current of our detector was found to be ∼180 pA/cm$^2$ at 10 V/m, which was significantly reduced than that of a single a-Se detector. The x-ray sensitivity was measured as the value of 4230 pC/cm$^2$/mR at 10 V/m. We found that the parylene thin film between a CaWO$_4$ phosphor and an a-Se layer acts as an insulator to prevent charge injection from indium thin oxide (ITO) electrode into an a-Se layer under applied bias.

Development of High-Quality LTCC Solenoid Inductor using Solder ball and Air Cavity for 3-D SiP

  • Bae, Hyun-Cheol;Choi, Kwang-Seong;Eom, Yong-Sung;Kim, Sung-Chan;Lee, Jong-Hyun;Moon, Jong-Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.5-8
    • /
    • 2009
  • In this paper, a high-quality low-temperature co-fired ceramic (LTCC) solenoid inductor using a solder ball and an air cavity on a silicon wafer for three-dimensional (3-D) system-in-package (SiP) is proposed. The LTCC multi-layer solenoid inductor is attached using Ag paste and solder ball on a silicon wafer with the air cavity structure. The air cavity is formed on a silicon wafer through an anisotropic wet-etching technology and is able to isolate the LTCC dielectric loss which is equivalent to a low k material effect. The electrical coupling between the metal layer and the LTCC dielectric layer is decreased by adopting the air cavity. The LTCC solenoid inductor using the solder ball and the air cavity on silicon wafer has an improved Q factor and self-resonant frequency (SRF) by reducing the LTCC dielectric resistance and parasitic capacitance. Also, 3-D device stacking technologies provide an effective path to the miniaturization of electronic systems.

  • PDF

A Study on Aesthetic Characteristics of T-shirt Design (티셔츠 디자인의 미적 특성)

  • Choi, Jung-Hwa
    • Fashion & Textile Research Journal
    • /
    • v.9 no.4
    • /
    • pp.363-372
    • /
    • 2007
  • T-shirt has changed into advanced and stylish outwear by new paradigm, taste of consumer, awareness of recycling, spread of subculture, DIY culture, refusal of standardization and pursuit of high quality goods, etc. The purpose of this study was to analyze aesthetic characteristics of t-shirt designs that changed into diverse designs in world fashion college since 2000. The method of this study was to analyze documentaries, fashion magazines and internet fashion site. Aesthetic characteristics of t-shirt designs were expressed in deconstruction, mixture, integration and imitation. And each of external expressions and internal meanings was as follows: First, deconstruction was expressed in partial cutwork and three dimensional texture by sewing and construction drape. It means breaking the conventional structure and break-ing the boundary of t-shirt and another item and possibility of multi-vocal analysis. Second, mixture was expressed in collage of diverse ornaments, diverse fabrics and diverse patterns. It means exceeding the limit of material, elaboratenes and high quality of handwork, reflection of self-identity, brand image, fashion trend, consumer's psychology and mind of experimentation and couture. Third, integration was expressed in extension of length, width, use and style. It means unification of functions, deconstruction of items and extension of meanings and images. Forth, imitation was expressed in stain of dye, irregular and ripped sign, cut out, rough warp, drawing and washing, etc. It means subculture, rarity value, monopolization, diversity, familiarity, yearning and uniqueness.

Optimal design of floating substructures for spar-type wind turbine systems

  • Choi, Ejae;Han, Changwan;Kim, Hanjong;Park, Seonghun
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.253-265
    • /
    • 2014
  • The platform and floating structure of spar type offshore wind turbine systems should be designed in order for the 6-DOF motions to be minimized, considering diverse loading environments such as the ocean wave, wind, and current conditions. The objective of this study is to optimally design the platform and substructure of a 3MW spar type wind turbine system with the maximum postural stability in 6-DOF motions as well as the minimum material cost. Therefore, design variables of the platform and substructure were first determined and then optimized by a hydrodynamic analysis. For the hydrodynamic analysis, the body weight of the system was considered, and the ocean wave conditions were quantified to the wave forces using the Morison's equation. Moreover, the minimal number of computation analysis models was generated by the Design of Experiments (DOE), and the design variables of the platform and substructure were finally optimized by using a genetic algorithm with a neural network approximation.

Structural Dynamics Optimization by Second Order Sensitivity with respect to Finite Element Parameter (유한요소 구조 인자의 2차 민감도에 의한 동적 구조 최적화)

  • Kim, Yong-Yun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.8-16
    • /
    • 2006
  • This paper discusses design sensitivity analysis and its application to a structural dynamics modification. Eigenvalue derivatives are determined with respect to the element parameters, which include intrinsic property parameters such as Young's modulus, density of the material, diameter of a beam element, thickness of a plate element, and shape parameters. Derivatives of stiffness and mass matrices are directly calculated by derivatives of element matrices. The first and the second order derivatives of the eigenvalues are then mathematically derived from a dynamic equation of motion of FEM model. The calculation of the second order eigenvalue derivative requires the sensitivity of its corresponding eigenvector, which are developed by Nelson's direct approach. The modified eigenvalue of the structure is then evaluated by the Taylor series expansion with the first and the second derivatives of eigenvalue. Numerical examples for simple beam and plate are presented. First, eigenvalues of the structural system are numerically calculated. Second, the sensitivities of eigenvalues are then evaluated with respect to the element intrinsic parameters. The most effective parameter is determined by comparing sensitivities. Finally, we predict the modified eigenvalue by Taylor series expansion with the derivatives of eigenvalue for single parameter or multi parameters. The examples illustrate the effectiveness of the eigenvalue sensitivity analysis for the optimization of the structures.

Simultaneous Detection of Biomolecular Interactions and Surface Topography Using Photonic Force Microscopy

  • Heo, Seung-Jin;Kim, Gi-Beom;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.402.1-402.1
    • /
    • 2014
  • Photonic force microscopy (PFM) is an optical tweezers-based scanning probe microscopy, which measures the forces in the range of fN to pN. The low stiffness leads proper to measure single molecular interaction. We introduce a novel photonic force microscopy to stably map various chemical properties as well as topographic information, utilizing weak molecular bond between probe and object's surface. First, we installed stable optical tweezers instrument, where an IR laser with 1064 nm wavelength was used as trapping source to reduce damage to biological sample. To manipulate trapped material, electric driven two-axis mirrors were used for x, y directional probe scanning and a piezo stage for z directional probe scanning. For resolution test, probe scans with vertical direction repeatedly at the same lateral position, where the vertical resolution is ~25 nm. To obtain the topography of surface which is etched glass, trapped bead scans 3-dimensionally and measures the contact position in each cycle. To acquire the chemical mapping, we design the DNA oligonucleotide pairs combining as a zipping structure, where one is attached at the surface of bead and other is arranged on surface. We measured the rupture force of molecular bonding to investigate chemical properties on the surface with various loading rate. We expect this system can realize a high-resolution multi-functional imaging technique able to acquire topographic map of objects and to distinguish difference of chemical properties between these objects simultaneously.

  • PDF

Analytical Approach to Compression and Shear Characteristics of the Unit Cell of PCM Core with Pyramidal Configuration (피라미드 형상의 PCM 코어 단위 셀의 압축 및 전단특성에 관한 해석적 연구)

  • Kim, S.W.;Jung, H.C.;Lee, Y.S.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.411-415
    • /
    • 2010
  • A sandwich panel which is comprised of truss cores faced with solid face sheets is lightweight and multi-functional. So it is widely used to not only structural material but also heat transfer media in transportation field such as airplane, train and vessel. There are various core topologies such as pyramidal and tetrahedral truss, square honeycombs and kagome truss. The study focused on analytical approach to optimize compression and shear quality of the unit cell of PCM with pyramidal configuration. With various unit cell models which have the same core weight per unit area but different truss member angle, analytical solution for effective stress ($\bar{\sigma},\bar{\tau}$), peak stress ($\bar{\sigma}_{peak},\bar{\tau}_{peak}$) by yielding and buckling, relative density ($\bar{\rho}_c$) and effective stiffness ($\bar{E},\bar{G}$) have been computed and compared each other. With this approach, the most optimal core configuration was predicted. The result has become the efficient guidelines for the design of PCM core structure.