• 제목/요약/키워드: Multi-learning System

검색결과 631건 처리시간 0.023초

MultiSAGE 모델과 ESG 지표를 적용한 상품 추천 시스템 개발 (Development of Product Recommendation System Using MultiSAGE Model and ESG Indicators)

  • 김현우;김용준;유길상
    • 인터넷정보학회논문지
    • /
    • 제25권1호
    • /
    • pp.69-78
    • /
    • 2024
  • 최근 소비자들은 환경, 사회, 지배구조 관련 정보를 확인하고 더 나은 사회적 가치와 환경 친화적인 제품을 선택하려는 경향이 증가되고 있다. 본 논문에서는 GraphSAGE와 GAT를 결합한 모델인 MultiSAGE를 활용하여 최근 소비 트렌드인 가치소비에 맞추어 ESG 지표를 적용한 상품 추천 시스템을 제안하였다. 이를 위하여 한국 ESG 기준원에서 수집한 2022년 1,033개 기업의 ESG 등급 데이터와 실제 N기업의 쇼핑의 상품 데이터를 Heterogeneous Graph 형식의 데이터로 바꾸는 데이터 처리 과정과 MultiSAGE를 적용하여 머신 러닝에 적용하고, 특정 상품을 입력하면 그 상품의 친환경 대체재를 추천해주는 추천 시스템을 구현하였다. 구현결과, 소비자들은 기업의 ESG지표를 적용한 제품을 쉽게 비교하여 구매할 수 있고, 이를 통해 사회적 가치와 환경친화적인 제품을 추천하는 시스템에 활용될 것으로 기대한다.

분산환경을 위한 상호작용적 실시간 교육시스템의 개발 (Development of an Interactive Real-time Education System for Distributed Environments)

  • 김원영;김치수;김진수
    • 한국멀티미디어학회논문지
    • /
    • 제3권5호
    • /
    • pp.506-515
    • /
    • 2000
  • 본 논문은 학교현장에서 학습자의 창의력 신장을 위해 멀티미디어 교육을 지원하는 웹 기반 실시간 교육 시스템을 제안하였다. 제안된 시스템은 교수·학습자간의 실시간 상호작용과 개별학습, 학습자의 학습일탈을 방지하기 위한 강제화면 분배를 지원할 수 있게 설계되었다. 본 시스템은 UML을 적용하여 다중 사용자 환경에서의 실시간 메시지 교환과 관리를 위한 모듈을 두어 효율적인 상호작용이 가능하게 하였으며, 학습자의 실험·실습을 위한 시뮬레이션이 이루어지고 실험의 방법과 결과분석 등에 대한 질의 응답을 지원한다. 학습자의 학습진행과 지식형성을 위해 시스템의 교육적 기반을 구성주의에 두었다.

  • PDF

지역시간지연 순환형 신경회로망을 이용한 비선형 시스템 규명 (System Identification of Nonlinear System using Local Time Delayed Recurrent Neural Network)

  • 정길도;홍동표
    • 한국정밀공학회지
    • /
    • 제12권6호
    • /
    • pp.120-127
    • /
    • 1995
  • A nonlinear empirical state-space model of the Artificial Neural Network(ANN) has been developed. The nonlinear model structure incorporates characteristic, so as to enable identification of the transient response, as well as the steady-state response of a dynamic system. A hybrid feedfoward/feedback neural network, namely a Local Time Delayed Recurrent Multi-layer Perception(RMLP), is the model structure developed in this paper. RMLP is used to identify nonlinear dynamic system in an input/output sense. The feedfoward protion of the network architecture provides with the well-known curve fitting factor, while local recurrent and cross-talk connections provides the dynamics of the system. A dynamic learning algorithm is used to train the proposed network in a supervised manner. The derived dynamic learning algorithm exhibit a computationally desirable characteristic; both network sweep involved in the algorithm are performed forward, enhancing its parallel implementation. RMLP state-space and its associate learning algorithm is demonstrated through a simple examples. The simulation results are very encouraging.

  • PDF

반복학습제어와 할바흐 자석 배열 스튜어트 플랫폼을 이용한 차량 진동 신호 재현 (Replication of Automotive Vibration Target Signal Using Iterative Learning Control and Stewart Platform with Halbach Magnet Array)

  • 고병식;강수영
    • 한국소음진동공학회논문집
    • /
    • 제23권5호
    • /
    • pp.438-444
    • /
    • 2013
  • This paper presents the replication of a desired vibration response by iterative learning control (ILC) system for a vibration motion replication actuator. The vibration motion replication actuator has parameter uncertainties including system nonlinearity and joint nonlinearity. Vehicle manufacturers worldwide are increasingly relying on road simulation facilities that put simulated loads and stresses on vehicles and subassemblies in order to reduce development time. Road simulation algorithm is the key point of developing road simulation system. With the rapid progress of digital signal processing technology, more complex control algorithms including iterative learning control can be utilized. In this paper, ILC algorithm was utilized to produce simultaneously the six channels of desired responses using the Stewart platform composed of six linear electro-magnetic actuators with Halbach magnet array. The convergence rate and accuracy showed reasonable results to meet the requirement. It shows that the algorithm is acceptable to replicate multi-channel vibration responses.

Online Multi-Object Tracking by Learning Discriminative Appearance with Fourier Transform and Partial Least Square Analysis

  • Lee, Seong-Ho;Bae, Seung-Hwan
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.49-58
    • /
    • 2020
  • 본 연구는 온라인 다중 객체 추적 환경에서 모든 객체의 상태(예. 위치 및 크기) 및 identifications (IDs)를 추적하는 문제를 다룬다. 프레임들 간 검출 결과들을 연관하여 객체들의 궤도를 점진적으로 완성하는 tracking-by-detection 접근법을 기반으로 온라인 다중 객체 추적 문제를 해결하고자 한다. 정확한 온라인 연관을 수행하기 위해 이산 푸리에 변환과 부분 최소 제곱법(partial least square, PLS) 분석을 기반으로 하는 새로운 온라인 외형 학습 방법을 제안한다. 즉, 먼저 주파수 도메인에서 추적에 용이한 객체 특징량을 추출하기 위해 추적 객체에 대한 이미지를 푸리에 이미지로 변환한다. 나아가 객체간의 주파수 특징을 보다 잘 구별할 수 있도록 PLS기반 부분 공간을 학습한다. 제안된 외형 학습을 최신 신뢰도 기반 연관 기법과 결합하였고, 다중 객체 추적평가 분야에서 국제적으로 공인된 MOT 벤치마크 챌린지 데이터 셋에서 최신 다중 객체 추적 알고리즘과 비교평가를 수행하였다.

실내 문화시설 안전을 위한 딥러닝 기반 방문객 검출 및 동선 추적에 관한 연구 (Deep Learning-based Approach for Visitor Detection and Path Tracking to Enhance Safety in Indoor Cultural Facilities)

  • 신원섭;노승민
    • Journal of Platform Technology
    • /
    • 제11권4호
    • /
    • pp.3-12
    • /
    • 2023
  • 포스트-코로나 시대에는 방역 조치의 중요성이 크게 강조되고 있으며, 이에 맞춰 딥러닝을 이용한 마스크 착용 상태 검출 및 다른 전염병 예방에 관련된 연구가 진행되고 있다. 그러나 질병 확산 방지를 위한 문화시설 관람객 탐지 및 추적 연구도 마찬가지로 중요하므로 이에 대한 연구가 진행되어야 한다. 본 논문에서는 사전 수집된 데이터 셋을 이용하여 컨볼루션 신경망 기반 객체 탐지 모델을 전이 학습시키고, 학습된 탐지 모델의 가중치를 다중 객체 추적 모델에 적용하여 방문객을 모니터링 한다. 방문객 탐지 모델은 Precision 96.3%, Recall 85.2% F1-Score 90.4%의 결과를 보여주었다. 추적 모델의 정량적 결과로 MOTA 65.6%, IDF1 68.3%. HOTA 57.2%의 결과를 보여주었으며, 본 논문의 모델과 다른 다중 객체 추적 모델 간의 정성적 비교에서 우수한 결과를 보여주었다. 본 논문의 연구는 포스트-코로나 시대의 문화시설 내 방역 시스템에 적용될 수 있을 것이다.

  • PDF

A Dynamic Channel Switching Policy Through P-learning for Wireless Mesh Networks

  • Hossain, Md. Kamal;Tan, Chee Keong;Lee, Ching Kwang;Yeoh, Chun Yeow
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.608-627
    • /
    • 2016
  • Wireless mesh networks (WMNs) based on IEEE 802.11s have emerged as one of the prominent technologies in multi-hop communications. However, the deployment of WMNs suffers from serious interference problem which severely limits the system capacity. Using multiple radios for each mesh router over multiple channels, the interference can be reduced and improve system capacity. Nevertheless, interference cannot be completely eliminated due to the limited number of available channels. An effective approach to mitigate interference is to apply dynamic channel switching (DCS) in WMNs. Conventional DCS schemes trigger channel switching if interference is detected or exceeds a predefined threshold which might cause unnecessary channel switching and long protocol overheads. In this paper, a P-learning based dynamic switching algorithm known as learning automaton (LA)-based DCS algorithm is proposed. Initially, an optimal channel for communicating node pairs is determined through the learning process. Then, a novel switching metric is introduced in our LA-based DCS algorithm to avoid unnecessary initialization of channel switching. Hence, the proposed LA-based DCS algorithm enables each pair of communicating mesh nodes to communicate over the least loaded channels and consequently improve network performance.

연구과제 선정.평가 체계설계에 관한 연구 (Project Selection & Evaluation System Design and Implementation-Literature Review and Case Study-)

  • 용세중;최덕출;한종우;정용훈;이원영
    • 기술혁신연구
    • /
    • 제2권1호
    • /
    • pp.116-141
    • /
    • 1994
  • This paper presents a model for R&D project selection and evaluation system design developed through literature review. The model emphasizes the fitness between the five elements of the system : evaluation phase and purpose, personnel and organization, evaluation critiria and decision model, evaluation form and procedure, and projects. The model was applied in real situation as a test case. The important findings are that a good project selection and evaluation model contributes only partially to the effectiveness of the project selection and that system development and implementation activity is a dynamic and multi-facetted learning process.

  • PDF

Spring Flow Prediction affected by Hydro-power Station Discharge using the Dynamic Neuro-Fuzzy Local Modeling System

  • Hong, Timothy Yoon-Seok;White, Paul Albert.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.58-66
    • /
    • 2007
  • This paper introduces the new generic dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi-Sugeno (TS) type fuzzy inference system for complex dynamic hydrological modeling tasks. The proposed DNFLMS applies a local generalization principle and an one-pass training procedure by using the evolving clustering method to create and update fuzzy local models dynamically and the extended Kalman filtering learning algorithm to optimize the parameters of the consequence part of fuzzy local models. The proposed DNFLMS is applied to develop the inference model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatts Cobb hydropower station on springs flow. It is demonstrated that the proposed DNFLMS is superior in terms of model accuracy, model complexity, and computational efficiency when compared with a multi-layer perceptron trained with the back propagation learning algorithm and well-known adaptive neural-fuzzy inference system, both of which adopt global generalization.

  • PDF

관성/고도 센서 융합을 위한 기계학습 기반 필터 파라미터 추정 (Machine Learning-Based Filter Parameter Estimation for Inertial/Altitude Sensor Fusion)

  • Hyeon-su Hwang;Hyo-jung Kim;Hak-tae Lee;Jong-han Kim
    • 한국항행학회논문지
    • /
    • 제27권6호
    • /
    • pp.884-887
    • /
    • 2023
  • Recently, research has been actively conducted to overcome the limitations of high-priced single sensors and reduce costs through the convergence of low-cost multi-variable sensors. This paper estimates state variables through asynchronous Kalman filters constructed using CVXPY and uses Cvxpylayers to compare and learn state variables estimated from CVXPY with true value data to estimate filter parameters of low-cost sensors fusion.