• Title/Summary/Keyword: Multi-layered materials

Search Result 232, Processing Time 0.028 seconds

Design of broad-band radar absorbing materials using multi-layered lossy dielectrics (다층 손실 유전체를 이용한 광대역 전파 흡수체 설계)

  • 이동근;남기진;이상설
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.3
    • /
    • pp.17-24
    • /
    • 1997
  • Broad-band RAM's (Radar absorbing materials) are designed by multi-layered lossy dielectrics. The depth, the relative permittivity and the loss tangent of each layer are optimized in order to meet the required reflective power over the specified frequency range using a genetic algorithm. The reflection coefficients are calculated by the continued fraction method. A new population model of the partial initialization method during iterations is applied for the multi-modal functions to enhance the performance of the genetic algorithm. The optimal RAN's are designed by setting the relative permittivity and the loss tangent of the dielectrics as a funtion of the frequency over 5~20GHz.

  • PDF

Fabrication and Electromagnetic Characteristics of Electromagnetic Wave Absorbing Sandwich Structures (샌드위치 구조의 전자기파 흡수체 제작 및 전자기적 특성)

  • Park Ki-Yeon;Lee Sang-Eui;Han Jae-hung;Kim Chun-Gon;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.131-134
    • /
    • 2004
  • The object of this study is to design the Radar Absorbing Structures (RAS) having sandwich structures in the X-band $(8.2\~12.4GHz)$ frequencies. Glass fabric/epoxy composites containing conductive carbon blacks and carbon fabric/epoxy composites were used for the face sheets. Polyurethane (PU) foams containing multi­walled carbon nanotube (MWNT) were used for the core. Their permittivities in the X-band were measured using the transmission line technique. The reflection loss characteristics for multi-layered sandwich structures were calculated using the theory of transmission and reflection in a multi-layered medium. Three kinds of specimens were fabricated and their reflection losses in the X-band were measured using the free space technique. Experimental results were in good agreements with simulated ones in 10dB absorbing bandwidth.

  • PDF

Efficient Layered Manufacturing Method of Metallic Sandwich Panel with Pyramidal Truss Structures using Infrared Brazing and its Mechanical Characteristics (피라미드 트러스형 금속 샌드위치 판재의 적외선 브레이징을 이용한 효율적 적층식 제작 및 특성에 관한 연구)

  • Lee, Se-Hee;Seong, Dae-Yong;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.76-83
    • /
    • 2010
  • Metallic sandwich panels with pyramidal truss structures are high-stiffness and high-strength materials with low weight. In particular, bulk structures have enough space for additional multi-functionalities. In this work, in order to fabricate 3-D structures efficiently, Layered Manufacturing Method (LMM) which was composed of three steps, including crimping process, stacking process and bonding process using rapid infrared brazing, was proposed. The joining time was drastically reduced by employing infrared brazing of which heating rate and cooling rate were faster than those of conventional furnace brazing. By controlling the initial cooling rate slowly, the bonding strength was improved up to the level of strength by conventional vacuum brazing. The observation of infrared brazed specimens by optical microscope and SEM showed no defect on the joining sections. The experiments of 1-layered pyramidal structures and 2-layered pyramidal structures subject to 3-point bending were conducted to determine structural advantages of multilayered structures. From the results, the multi-layered structure has superior mechanical properties to the single-layered structure.

Experimental Research for Air-borne Noise Reduction of a Multi-layered Insulation (다층 인슐레이션의 차음성능에 대한 실험적 연구)

  • 고강호;김영호;국형석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1185-1191
    • /
    • 2001
  • This paper discusses an experimental method for measuring the insertion loss (IL) performance of multi-layered insulations that are used in vehicles. Instead of two adjacent reverberation chambers which are generally used to measure the transmission loss (TL) of the large sound isolation materials, air-borne sound insulation tester was utilized to determine the IL and articulation index (AI) of standardized insulation materials. In comparison to reverberation chamber method, air-borne sound insulation tester method is more space-saving, more time-saving and more simple to the automotive acoustics. From the empirical results, it is found that the performances of insulation materials are closely connected with density of polyurethane foam, thickness of heavy layer, thickness of polyurethane foam, and application ratio to panel area.

  • PDF

A prediction of indoor pollutant concentration using method mass transfer coefficient in multi-layered building materials (복합 건축자재의 물질전달계수를 이용한 실내 오염물질 농도 예측방법)

  • Kim, Chang Nam;Lee, Yun Gyu;Leigh, Seung Bok;Kim, Tae Yeon
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.53-58
    • /
    • 2007
  • In order to predict the indoor air pollutant, the VOCs emission rate is used through small chamber in the design process. However, the small chamber method has limitations as the convective mass transfer coefficient, the most important factor when predicting VOCs contamination of indoor air, is different between the small chamber result and the measured data in the actual building. Furthermore, the existing studies which analyzed mass transfer coefficient in the small chamber were directed on the small chambers developed at the time and FLEC(Field and Laboratory Emission Cell), thus, are different from the current small chamber which has been changed with improvements. The purpose of this study is to determine the emission rate of pollutant in multi-layered building materials, and predict the indoor pollutant concentration through the CFD(Computational of Fluid Dynamics) and CRIAQ2 based on the mass transfer coefficient on singled-layered building material by using the current small chamber widely used in Korea. Futhermore, this study used the new convective mass transfer coefficient(hm') which indicates the existing convective mass transfer coefficient(hm) including VOC partition coefficient(k). Also, formaldehyde was selected as target pollutant.

Improvement of a UV/Ozone Duplex Sterilizer (UV/Ozone 복합 살균기의 살균력 개선 연구)

  • Jee, Jung-Eun;Yang, Won-Kyun;Park, Eun-Chul;Kim, Kang-Suk;Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.76-82
    • /
    • 2008
  • We investigated sterilization characteristics of UV lights by counting the number of bacteria units with varying sterilization time and distance from the light source. We focused on an idea that UV light of 184.9 nm could generate ozone and developed a new sterilizer. The UV-ozone duplex system sterilized bacteria faster than UV-only sterilizers. To reduce shadowing effects by target objects, we used UV transparent quartz plate as a support and put a reflecting plate. Distribution of UV irradiation intensity and ozone supply were analyzed by a 3D model and measured by a semiconductor UV sensor. But even with an Al reflector, multi-layered pens could not be treated properly from UV irradiation only. Ozone generating lamp could treat more uniformly multi-layered pens with a stirring fan by supplying ozone to shadowed surfaces.

Effect of Fines Distribution on Press Dewatering and Physical Properties of Multi-ply Sheet

  • Lee, Hak-Lae;Youn, Hye-Jung;Kang, Tae-Young;Choi, Ik-Sun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.5
    • /
    • pp.36-41
    • /
    • 2008
  • Multi-ply sheet forming has many advantages including the possibility of using wide range of materials in a given structure, lowering production cost, making higher grammage products and so on. But, incorrect structure of sheet makes flow resistance higher so that it shows poor dewatering in press section. One of major factors that affect sheet structure and dewatering property is fines content in each layer. We, therefore, examined the press dewatering of multi-ply sheet that has the different fines content in each layer and the effect of fines distribution on physical properties of sheet to find a technology for optimum utilization of raw materials. In case of two layered sheet, the sheet which was composed of layers with the different flow resistance showed higher dewatering rate than one which has the same flow resistance. And the more difference in fines content for layers existed, the more dewatering occurred. For three layered sheets, dewatering is mainly dependent on fines content of bottom layer. Strength properties were affected by dewatering degree and multi-ply sheet structure.

Establishment of Laser Sintering Technique for Titanium Powder

  • Miura, Hideshi;Takemasu, Teruie;Uemura, Makoto;Otsu, Masaaki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.244-245
    • /
    • 2006
  • This paper investigates the characteristic of single-layered and multi-layered compacts made by selective laser sintering using titanium powder (TILOP45 and TILOP150, Sumitomo Titanium Corp.) There were few defects in smooth surface of laser sintered specimen in vacuum as compared to the laser sintered specimen in argon. Maximum tensile strength of singlelayered compact was about 200MPa. Multi-layered compacts show the density of around 75% and the adhesive bonding was not observed between layers, resulted in 70MPa of maximum bending strength and 50MPa of maximum tensile strength.

  • PDF