• 제목/요약/키워드: Multi-layer back propagation network

검색결과 110건 처리시간 0.025초

신경회로망 보상기를 이용하는 슬라이딩 모드 제어기 설계 (Design of a sliding Mode Controller Using a Neural Compensator)

  • 이민호;정순기
    • 제어로봇시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.256-262
    • /
    • 2000
  • This paper proposes a new sliding mode controller combined with a multi-layer neural network using the error back propagation learning algorithm,, The network acts as a compensator of the conventional sliding mode controller to improve the control performance when initial assumptions of uncertainty bounds of system parameters are violated. The proposed controller can reduce th steady state error of conventional sliding mode controller with the boundary layer technique Computer simulation results show that the proposed method is effective to control dynamic systems with unexpectably large uncertainties.

  • PDF

The nonlinear function approximation based on the neural network application

  • Sugisaka, Masanori;Itou, Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.462-462
    • /
    • 2000
  • In this paper, genetic algorithm (GA) is the technique to search for the optimal structures (i,e., the kind of neural network, the number of hidden neuron, ..) of the neural networks which are used approximating a given nonlinear function, In this paper, we used multi layer feed-forward neural network. The decision method of synapse weights of each neuron in each generation used back-propagation method. In this study, we simulated nonlinear function approximation in the temperature control system.

  • PDF

러프셋 이론을 이용한 신경망의 구조 최적화 (Structure Optimization of Neural Networks using Rough Set Theory)

  • 정영준;이동욱;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 춘계학술대회 학술발표 논문집
    • /
    • pp.49-52
    • /
    • 1998
  • Neural Network has good performance in pattern classification, control and many other fields by learning ability. However, there is effective rule or systematic approach to determine optimal structure. In this paper, we propose a new method to find optimal structure of feed-forward multi-layer neural network as a kind of pruning method. That eliminating redundant elements of neural network. To find redundant elements we analysis error and weight changing with Rough Set Theory, in condition of executing back-propagation leaning algorithm.

  • PDF

인공신경망 이론을 이용한 충주호의 수질예측 (Water Quality Forecasting of Chungju Lake Using Artificial Neural Network Algorithm)

  • 정효준;이소진;이홍근
    • 한국환경과학회지
    • /
    • 제11권3호
    • /
    • pp.201-207
    • /
    • 2002
  • This study was carried out to evaluate the artificial neural network algorithm for water quality forecasting in Chungju lake, north Chungcheong province. Multi-layer perceptron(MLP) was used to train artificial neural networks. MLP was composed of one input layer, two hidden layers and one output layer. Transfer functions of the hidden layer were sigmoid and linear function. The number of node in the hidden layer was decided by trial and error method. It showed that appropriate node number in the hidden layer is 10 for pH training, 15 for DO and BOD, respectively. Reliability index was used to verify for the forecasting power. Considering some outlying data, artificial neural network fitted well between actual water quality data and computed data by artificial neural networks.

Neural Netwotk Analysis of Acoustic Emission Signals for Drill Wear Monitoring

  • Prasopchaichana, Kritsada;Kwon, Oh-Yang
    • 비파괴검사학회지
    • /
    • 제28권3호
    • /
    • pp.254-262
    • /
    • 2008
  • The objective of the proposed study is to produce a tool-condition monitoring (TCM) strategy that will lead to a more efficient and economical drilling tool usage. Drill-wear monitoring is an important attribute in the automatic cutting processes as it can help preventing damages of the tools and workpieces and optimizing the tool usage. This study presents the architectures of a multi-layer feed-forward neural network with back-propagation training algorithm for the monitoring of drill wear. The input features to the neural networks were extracted from the AE signals using the wavelet transform analysis. Training and testing were performed under a moderate range of cutting conditions in the dry drilling of steel plates. The results indicated that the extracted input features from AE signals to the supervised neural networks were effective for drill wear monitoring and the output of the neural networks could be utilized for the tool life management planning.

신경망을 이용한 레이저마크 오류 검출기법 (Detection of False Laser Marks Using Neural Network)

  • 신중돈;한헌수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(3)
    • /
    • pp.87-90
    • /
    • 2002
  • This paper has been studied a new approach using neural network to detect false laser marks. In the proposed approach, input images are segmented into R, G and B colors and implements mask areas respectively. And then average and variation values of the each mask area are extracted for the learning process to minimize input nodes. Using this technique, the new input data is obtained and implemented to the back-propagation algorithm using multi layer perception. This paper reduces the computational complexity necessary and shows better effectiveness to inspect false laser marks.

  • PDF

다층 퍼셉트론 신경망을 이용한 하드 디스크 결함 분포의 패턴 인식 (Pattern Recognition of Hard Disk Defect Distribution Using Multi-Layer Perceptron Network)

  • 문운철;이재두
    • 조명전기설비학회논문지
    • /
    • 제21권6호
    • /
    • pp.94-101
    • /
    • 2007
  • 하드 디스크(Hard Disk) 결함의 표준 패턴 클래스는 6가지로 분류되며, 이는 하드 디스크 생산 공정의 불량 처리 과정에서 중요한 역할을 수행한다. 본 논문에서는 다층 퍼셉트론(Multi-Layer Perceptron)을 이용한 하드 디스크 결함 분포의 패턴 인식 기법을 제시한다. 결함 분포로부터 5가지의 특징들을 추출하고, 이를 이용하여 퍼셉트론의 입력을 구성하였으며, 미리 분류된 표준 패턴 클래스를 이용하여 퍼셉트론의 출력을 구성하였다. 구성된 입출력 데이터들은 오차 역전파(Error Back-Propagation) 알고리듬을 통하여 다층 퍼셉트론의 학습에 사용되었다. 테스트 결과 제시된 신경망은 하드 디스크의 패턴 분류에 만족할 만한 성능을 나타내었다.

다중 출력을 가지는 퍼지 관계 기반 퍼지뉴럴네트워크 설계 및 최적화 (Design of Fuzzy Relation-based Fuzzy Neural Networks with Multi-Output and Its Optimization)

  • 박건준;김현기;오성권
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.832-839
    • /
    • 2009
  • In this paper, we introduce an design of fuzzy relation-based fuzzy neural networks with multi-output. Fuzzy relation-based fuzzy neural networks comprise the network structure generated by dividing the entire input space. The premise part of the fuzzy rules of the network reflects the relation of the division space for the entire input space and the consequent part of the fuzzy rules expresses three types of polynomial functions such as constant, linear, and modified quadratic. For the multi-output structure the neurons in the output layer were connected with connection weights. The learning of fuzzy neural networks is realized by adjusting connections of the neurons both in the consequent part of the fuzzy rules and in the output layer, and it follows a back-propagation algorithm. In addition, in order to optimize the network, the parameters of the network such as apexes of membership functions, learning rate and momentum coefficient are automatically optimized by using real-coded genetic algorithm. Two examples are included to evaluate the performance of the proposed network.

유량 보간 신경망 모형의 개발 및 낙동강 유역에 적용 (Development of Flow Interpolation Model Using Neural Network and its Application in Nakdong River Basin)

  • 손아롱;한건연;김지은
    • 환경영향평가
    • /
    • 제18권5호
    • /
    • pp.271-280
    • /
    • 2009
  • The objective of this study is to develop a reliable flow forecasting model based on neural network algorithm in order to provide flow rate at stream sections without flow measurement in Nakdong river. Stream flow rate measured at 8-days interval by Nakdong river environment research center, daily upper dam discharge and precipitation data connecting upstream stage gauge were used in this development. Back propagation neural network and multi-layer with hidden layer that exists between input and output layer are used in model learning and constructing, respectively. Model calibration and verification is conducted based on observed data from 3 station in Nakdong river.

다층 신경회로망을 이용한 GMA 용접 단락이행영역에서의 아크 안정성 평가 (A Study of Estimation of the Arc Stability in Short-circuition Transfer Region of GMA Welding Using Multi-layer Perceptrons)

  • 강문진;이세헌;엄기원
    • Journal of Welding and Joining
    • /
    • 제17권5호
    • /
    • pp.98-106
    • /
    • 1999
  • In GMAW, the spatters are generated according to the variation of the arc. Of the arc is stable, Few spatters are generated. But if unstable, too many spatters are generated. So, this means the spatters are dependent on the arc state. The aim of this study is to accurately estimate the arc state. To do this, the generated spatters were captured under the some welding conditions, and the waveforms of the arc voltage and welding current were collected. From the collected signals, the waveform factors and their standard deviations were extracted. Using these factors as input parameters of multi-layer artificial neural network, the learning for the weight of the generated spatters is performed and the estimation results to the real spatter are assessed. Obtained results are as follow: the linear correlation coefficient between the estimated result and the real spatters was 0.9986. And although the average convergence error was set 0.002, the estimated error to the real spatter was within 0.1 gr/min at each welding condition. In the estimation for the weight generated spatters, the result with multi-layer neural network was far better than with multiple regression analysis. Especially, even though under the welding condition which the arc state is unstable (the spatter is generated much more), very excellent estimation performance was shown.

  • PDF