• Title/Summary/Keyword: Multi-hop network

Search Result 582, Processing Time 0.025 seconds

An Adaptive Regional Clustering Scheme Based on Threshold-Dataset in Wireless Sensor Networks for Monitoring of Weather Conditions (기상감시 무선 센서 네트워크에 적합한 Threshold-dataset 기반 지역적 클러스터링 기법)

  • Choi, Dong-Min;Shen, Jian;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1287-1302
    • /
    • 2011
  • Clustering protocol that is used in wireless sensor network is an efficient method that extends the lifetime of the network. However, when this method is applied to an environment in which collected data of the sensor node easily overlap, sensor nodes unnecessarily consumes energy. In the case of clustering technique that uses a threshold, the lifetime of the network is extended but the degree of accuracy of collected data is low. Therefore it is hard to trust the data and improvement is needed. In addition, it is hard for the clustering protocol that uses multi-hop transmission to normally collect data because the selection of a cluster head node occurs at random and therefore the link of nodes is often disconnected. Accordingly this paper suggested a cluster-formation algorithm that reduces unnecessary energy consumption and that works with an alleviated link disconnection. According to the result of performance analysis, the suggested method lets the nodes consume less energy than the existing clustering method and the transmission efficiency is increased and the entire lifetime is prolonged by about 30%.

A Same-Priority Collision-Avoidance Algorithm Using RTS/CTS Frame in IEEE 802.11e EDCA under Network Congested Condition (IEEE 802.11e EDCA 네트워크 혼잡 환경에서 RTS/CTS 프레임을 이용한 동일 우선순위 충돌 회피 알고리즘)

  • Kwon, YongHo;Rhee, Byung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.5
    • /
    • pp.425-432
    • /
    • 2014
  • The Enhanced Distributed Channel Access (EDCA) function of IEEE 802.11e standard defines contention window (CW) for different Access Category (AC) limits to support Quality-of-Service (QoS). However, it have been remained the problem that the collision probability of transmission is increasing in congested network. Several different solutions have been proposed but the collision occurs among same priority queue within the same station to compete the channel access. This paper presents an APCA (Advanced Priority Collision Avoidance) algorithm for EDCA that increases the throughput in saturated situation. The proposed algorithm use reserved field's bits of FC(Frame Control) using IEEE 802.11e standard's RTS/CTS (Request to Send / Clear to Send) mechanism to avoid data collision. The simulation results show that the proposed algorithm improves the performance of EDCA in packet loss. Using Jain's fairness index formula, we also prove that the proposed APCA algorithm achieves the better fairness than EDCA method under network congested condition.

Performance Improvement on MPLS On-line Routing Algorithm for Dynamic Unbalanced Traffic Load

  • Sa-Ngiamsak, Wisitsak;Sombatsakulkit, Ekanun;Varakulsiripunth, Ruttikorn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1846-1850
    • /
    • 2005
  • This paper presents a constrained-based routing (CBR) algorithm called, Dynamic Possible Path per Link (D-PPL) routing algorithm, for MultiProtocol Label Switching (MPLS) networks. In MPLS on-line routing, future traffics are unknown and network resource is limited. Therefore many routing algorithms such as Minimum Hop Algorithm (MHA), Widest Shortest Path (WSP), Dynamic Link Weight (DLW), Minimum Interference Routing Algorithm (MIRA), Profiled-Based Routing (PBR), Possible Path per Link (PPL) and Residual bandwidth integrated - Possible Path per Link (R-PPL) are proposed in order to improve network throughput and reduce rejection probability. MIRA is the first algorithm that introduces interference level avoidance between source-destination node pairs by integrating topology information or address of source-destination node pairs into the routing calculation. From its results, MIRA improves lower rejection probability performance. Nevertheless, MIRA suffer from its high routing complexity which could be considered as NP-Complete problem. In PBR, complexity of on-line routing is reduced comparing to those of MIRA, because link weights are off-line calculated by statistical profile of history traffics. However, because of dynamic of traffic nature, PBR maybe unsuitable for MPLS on-line routing. Also, both PPL and R-PPL routing algorithm we formerly proposed, are algorithms that achieve reduction of interference level among source-destination node pairs, rejection probability and routing complexity. Again, those previously proposed algorithms do not take into account the dynamic nature of traffic load. In fact, future traffics are unknown, but, amount of previous traffic over link can be measured. Therefore, this is the motivation of our proposed algorithm, the D-PPL. The D-PPL algorithm is improved based on the R-PPL routing algorithm by integrating traffic-per-link parameters. The parameters are periodically updated and are dynamically changed depended on current incoming traffic. The D-PPL tries to reserve residual bandwidth to service future request by avoid routing through those high traffic-per-link parameters. We have developed extensive MATLAB simulator to evaluate performance of the D-PPL. From simulation results, the D-PPL improves performance of MPLS on-line routing in terms of rejection probability and total throughput.

  • PDF

An Energy-Efficient Protocol For Detecting Injurious Insect in Wireless Bio Sensor Networks (무선 바이오센서 네트워크에서 에너지 효율을 고려한 해충 감지 시스템을 구축하기 위한 프로토콜)

  • Yoo, Dae Hyun;Lee, Joo Sang;An, Beongku;Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.29-34
    • /
    • 2008
  • In this paper, we proposed a system protocol for detecting injurious insect to support energy saving transmission in wireless bio sensor networks. The main ideas and features of the system are as follows. First, the route establishment method which is based on the energy efficiency and stability by using time-division tree structure. Second, multi-hop direction-based data gatering structure. In this structure, the selected fading method is used to transmit packet via the established tree structure for supporting power saving and route lifetime efficiently. Finally, we can get the node power saving and reduce transmission delay, thus network lifetime and efficiency are improved. The performance evaluation of the proposed protocol is via OPNET(Optimized Network Engineering Tool).

  • PDF

Dual-Radio Tag System for RFID Tag Mesh Networking (RFID 태그간 메쉬 네트워킹을 위한 듀얼 라디오 태그 시스템)

  • Kim, Jin-Hwan;Yoo, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1272-1282
    • /
    • 2009
  • This paper consists of two parts: the protocol for tag-to-tag mesh network and the implementation of dual-radio RFID system. Recently, RFID has been adopted in ports or warehouse, being attached to containers and palettes for loading/unloading automation. However, the RFID system has encountered one problem - some tags cannot receive any command from reader intermittently due to signal interference by containers or field equipments (e. g. cranes and yard tractors). This area where reader signal cannot reach is called dead-zone. The proposed method for solving the dead-zone problem is as follows. A zone which can be communicated directly between readers and tags communicates in 433MHz frequency band in compliance with ISO/IEC 18000-7 standard. On the other hand, dead-zone communicates in 2.4GHz frequency band by using tag-to-tag mesh network in compliance with IEEE 802.15.4 standard. The proposed method can not only save much cost to install additional readers but also help resolve the dead-zone problem. Furthermore, it can provide the easier, faster, and more economical network infrastructure.

MADF: Mobile-Assisted Data Forwarding for Wireless Data Networks

  • Xiaoxin;Gary, Shueng-Han;Biswanath;Bharat
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.216-225
    • /
    • 2004
  • In a cellular network, if there are too many data users in a cell, data may suffer long delay, and system's quality-of-service (QoS) will degrade. Some traditional schemes such as dynamic channel-allocation scheme (DCA) will assign more channels to hot (or overloaded) cells through a central control system (CC) and the throughput increase will be upper bounded by the number of new channels assigned to the cell. In mobile-assisted data forwarding (MADF), we add an ad-hoc overlay to the fixed cellular infrastructure and special channels-called forwarding channels- are used to connect mobile units in a hot cell and its surrounding cold cells without going through the hot cell's base station. Thus, mobile units in a hot cell can forward data to other cold cells to achieve load balancing. Most of the forwarding-channel management work in MADF is done by mobile units themselves in order to relieve the load from the CC. The traffic increase in a certain cell will not be upper bounded by the number of forwarding channels. It can be more if the users in hot cell are significantly far away from one another and these users can use the same forwarding channels to forward data to different cold neighboring cells without interference. We find that, in a system using MADF, under a certain delay requirement, the throughput in a certain cell or for the whole net-work can be greatly improved.

Studying Route Optimality in Multi-Hop Wireless Mesh Networks (다중 홉 무선 메쉬 네트워크에서 최적 경로에 관한 연구)

  • Kim, Seong-Kwan;Lee, Ok-Hwan;Lee, Sung-Ju;Choi, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1B
    • /
    • pp.16-23
    • /
    • 2009
  • This paper investigates how many optimal routes can be established in terms of a given wireless mesh routing metric. Although many of routing metrics have been devised to precisely derive the wireless link quality in mesh, most (if not all) metrics have not been evaluated their optimality along with routing protocols. We consider stateof-the-art routing metrics and a widely accepted routing protocol in order to observe the optimality of established routes varying the number of source nodes. Also, we propose a unidirectional routing to deal with possible link asymmetry feature in wireless links. Through comparative simulation evaluations, we show that the portion of optimally established routes becomes less as the network traffic load increases, regardless of employed metrics, network topologies, and routing protocols.

A Study of Air Pollution Monitoring System using Gossiping Route Protocol in wireless Sensor Network (Gossiping Route Protocol을 이용한 공기오염감지시스템에 관한 연구)

  • Park, Yong-Man;Kim, Hie-Sik;Kim, Gyu-Sik;Lee, Moon-Gyu;Ayurzana, Odgerel;Kwon, Jong-Won;Koo, Sang-Jun;Oh, Shi-Hwan;Kim, Dong-Ki;Jo, Ik-Kyun;Park, Jeong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.485-486
    • /
    • 2007
  • Wireless Sensor Networking is state of the art technology that has a wide range of potential applications. Sensor network generally consists of a large number of distributed nodes that organize themselves into a multi-hop wireless network. Each node has one or more sensors, embedded processors and low-power radios, and is normally battery operated because of small size. In this paper wireless sensor networking technology applies to the environment monitoring system in the underground. This system can monitor a pollution level of the underground in realtime for keeping up a comfortable environment.

  • PDF

A Reporting Interval Adaptive, Sensor Control Platform for Energy-saving Data Gathering in Wireless Sensor Networks

  • Choi, Wook;Lee, Yong;Kim, Sang-Chul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.247-268
    • /
    • 2011
  • Due to the application-specific nature of wireless sensor networks, the sensitivity to such a requirement as data reporting interval varies according to the type of application. Such considerations require an application-specific, parameter tuning paradigm allowing us to maximize energy conservation prolonging the operational network lifetime. In this paper, we propose a reporting interval adaptive, sensor control platform for energy-saving data gathering in wireless sensor networks. The ultimate goal is to extend the network lifetime by providing sensors with high adaptability to application-dependent or time-varying, reporting interval requirements. The proposed sensor control platform is based upon a two phase clustering (TPC) scheme which constructs two types of links within each cluster - namely, direct link and relay link. The direct links are used for control and time-critical, sensed data forwarding while the relay links are used only for multi-hop data reporting. Sensors opportunistically use the energy-saving relay link depending on the user reporting, interval constraint. We present factors that should be considered in deciding the total number of relay links and how sensors are scheduled for sensed data forwarding within a cluster for a given reporting interval and link quality. Simulation and implementation studies demonstrate that the proposed sensor control platform can help individual sensors save a significant amount of energy in reporting data, particularly in dense sensor networks. Such saving can be realized by the adaptability of the sensor to the reporting interval requirements.

The Design, Implementation, and Evaluation of a User-Level Mobile Ad Hoc Network Routing with COTS Devices (사용자 계층 모바일 애드혹 라우팅 네트워크 설계와 실제 환경에서의 성능 검증)

  • Kim, Joon-Gyum;Gong, Taesik;Lee, Sung-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.7
    • /
    • pp.845-851
    • /
    • 2019
  • We design, implement, and evaluate a user-level ad hoc network routing protocol on the COTS (commercial off-the-shelf) mobile devices. In situations such as disaster recovery, emergency communication between mobile devices is necessary. For wide deployability and usability of such a system, we design and implement the networking protocols on the user level instead of modifying the kernel of mobile devices. In order to support reliable data transfer in high mobility scenarios, we selected to implement AODV (Ad Hoc On-Demand Distance Vector) as the routing protocol and TCP as the transport layer protocol. With our implementation of ad hoc networking stack on COTS smartphones, we conducted experiments in various networking environments. Our experimental results show that ad hoc networking is possible in up to 12 hops in a line topology and 5 concurrent devices in a star topology.