• Title/Summary/Keyword: Multi-hop Wireless Sensor Networks

Search Result 154, Processing Time 0.023 seconds

Efficient Packet Transmission Mechanism for Multi-hop Wireless Sensor Networks (멀티-홉 무선 센서 네트워크에서 효율적인 패킷 전송 메커니즘)

  • Jeon, Jun Heon;Kim, Seong Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.492-498
    • /
    • 2015
  • In general, data packets from sensor nodes are transferred to the sink node in a wireless sensor networks. So many data packets are gathered around the sink node, resulting in significant packet collision and delay. In this paper, we propose an efficient packet transmission mechanism for multi-hop wireless sensor networks. The proposed mechanism is composed of two modes. One mode works between sink node and 1-hop nodes from sink. In this mode, data packets are transmitted in predefined time slots to reduce collisions. The other mode works between other nodes except sink node. In this mode, duplicated packets from neighbor nodes can be detected and dropped using some control signals. Our numerical analysis and simulation results show that our mechanism outperforms X-MAC and RI-MAC in terms of energy consumption and transmission delay.

An Energy Efficient Localized Topology Control Algorithm for Wireless Multihop Networks

  • Shang, Dezhong;Zhang, Baoxian;Yao, Zheng;Li, Cheng
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.371-377
    • /
    • 2014
  • Localized topology control is attractive for obtaining reduced network graphs with desirable features such as sparser connectivity and reduced transmit powers. In this paper, we focus on studying how to prolong network lifetime in the context of localized topology control for wireless multi-hop networks. For this purpose, we propose an energy efficient localized topology control algorithm. In our algorithm, each node is required to maintain its one-hop neighborhood topology. In order to achieve long network lifetime, we introduce a new metric for characterizing the energy criticality status of each link in the network. Each node independently builds a local energy-efficient spanning tree for finding a reduced neighbor set while maximally avoiding using energy-critical links in its neighborhood for the local spanning tree construction. We present the detailed design description of our algorithm. The computational complexity of the proposed algorithm is deduced to be O(mlog n), where m and n represent the number of links and nodes in a node's one-hop neighborhood, respectively. Simulation results show that our algorithm significantly outperforms existing work in terms of network lifetime.

RREM : Multi-hop Information Based Real-Time Routing Protocol to Support Event Mobility in Wireless Sensor Networks (무선 센서 망에서 실시간 응용의 이벤트 이동성을 지원하기 위한 라우팅 기법)

  • Lee, Soyeon;Lee, Jeongcheol;Park, Hosung;Kong, Jonguk;Kim, Sangha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.688-696
    • /
    • 2013
  • In wireless sensor networks, real-time applications have to ensure the timely delivery of real-time data. Recently, OMLRP (On-demand Multi-hop Look-ahead Routing Protocol) has been proposed to improve the timeliness of wireless sensor networks. The protocol needs initialization time to establish multi-hop information based routing path because it performs incremental look-ahead of the information. Consequently, the protocol deteriorates DDSR (Deadline Delivery Success Ratio) as an event moves because it takes little consideration of event mobility. In this paper, we proposed a Real-time Routing for Events Mobility (RREM) which exploits a data redirection in order to improve the DDSR of moving events. Instead of recollecting muti-hop look-ahead information, the RREM redirects the data to a sensor node holding the information collected in a previous round. We verify the timeliness and energy efficiency of RREM using various MatLab simulations.

A Virtual-Queue based Backpressure Scheduling Algorithm for Heterogeneous Multi-Hop Wireless Networks

  • Jiao, Zhenzhen;Zhang, Baoxian;Zheng, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4856-4871
    • /
    • 2015
  • Backpressure based scheduling has been considered as a promising technique for improving the throughput of a wide range of communication networks. However, this scheduling technique has not been well studied for heterogeneous wireless networks. In this paper, we propose a virtual-queue based backpressure scheduling (VQB) algorithm for heterogeneous multi-hop wireless networks. The VQB algorithm introduces a simple virtual queue for each flow at a node for backpressure scheduling, whose length depends on the cache size of the node. When calculating flow weights and making scheduling decisions, the length of a virtual queue is used instead of the length of a real queue. We theoretically prove that VQB is throughput-optimal. Simulation results show that the VQB algorithm significantly outperforms a classical backpressure scheduling algorithm in heterogeneous multi-hop wireless networks in terms of the packet delivery ratio, packet delivery time, and average sum of the queue lengths of all nodes per timeslot.

An Energy-Efficient Multi-Hop Scheme Based on Cooperative MIMO for Wireless Sensor Networks

  • Peng, Yu-Yang;Abn, Seong-Beom;Pan, Jae-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9A
    • /
    • pp.796-800
    • /
    • 2011
  • An energy-efficient multi-hop scheme based on cooperative MIMO (multiple-input multiple-output) technique is proposed for wireless sensor networks, taking into consideration the modulation constellation size, transmission distance, and extra training overhead requirement. The scheme saves energy by selecting the hop length. In order to evaluate the performance of the proposed scheme, a detailed analysis of the energy and delay efficiencies in the proposed scheme compared with the equidistance scheme is presented. Results from numerical experiments indicate that by use of the proposed scheme significant savings in terms of total energy cousumption can be achieved.

An Analysis of Energy Efficient Cluster Ratio for Hierarchical Wireless Sensor Networks (계층적 센서네트워크에서 에너지 효율성을 위한 최적의 클러스터 비율 분석)

  • Jin, Zilong;Kim, Dae-Young;Cho, Jinsung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.6
    • /
    • pp.446-453
    • /
    • 2013
  • Clustering schemes have been adopted as an efficient solution to prolong network lifetime and improve network scalability. In such clustering schemes cluster ratio is represented by the rate of the number of cluster heads and the number of total nodes, and affects the performance of clustering schemes. In this paper, we mathematically analyze an optimal clustering ratio in wireless sensor networks. We consider a multi-hop to one-hop transmission case and aim to provide the optimal cluster ratio to minimize the system hop-count and maximize packet reception ratio between nodes. We examine its performance through a set of simulations. The simulation results show that the proposed optimal cluster ratio effectively reduce transmission count and enhance energy efficiency in wireless sensor networks.

Using Range Extension Cooperative Transmission in Energy Harvesting Wireless Sensor Networks

  • Jung, Jin-Woo;Ingram, Mary Ann
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.169-178
    • /
    • 2012
  • In this paper, we study the advantages of using range extension cooperative transmission (CT) in multi-hop energy harvesting wireless sensor networks (EH-WSNs) from the network layer perspective. EH-WSNs rely on harvested energy, and therefore, if a required service is energy-intensive, the network may not be able to support the service successfully. We show that CT networks that utilize both range extension CT and non-CT routing can successfully support services that cannot be supported by non-CT networks. For a two-hop toy network, we show that range extension CT can provide better services than non-CT. Then, we provide a method of determining the supportable services that can be achieved by using optimal non-CT and CT routing protocols for EH-WSNs. Using our method and network simulations, we justify our claim that CT networks can provide better services than nonCT networks in EH-WSNs.

Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

  • Kim, Jae-Hyun;Kim, Seog-Gyu;Lee, Jai-Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.105-122
    • /
    • 2011
  • The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay.

A Low-Delay MAC(LD-MAC) protocol in Multi-Hop Wireless Sensor Networks (멀티 홉 무선 센서 네트워크에서 저 지연을 지원하는 MAC 프로토콜)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.452-458
    • /
    • 2014
  • In Wireless Sensor Networks the Medium access control (MAC) protocol has many challenges to solve such as reducing energy consumption, supporting QoS(quality of service) fairness, and reducing delivery delay. This paper proposed a low-delay supporting MAC protocol in multi-hop Wireless Sensor Networks. The proposed protocol uses the RB(rapid beacon) frame for reducing delivery delay. The RB frame is a modified IEEE 802.15.4 beacon frame. For sender adaptive-wakeup, the RB frame includes a seed number for determining of a receiver wakeup time. And for next hop receiver adaptive-wakeup, the RB frame includes the length of remaining data packet information. Results showed that our LD-MAC protocol outperformed other protocol in terms of data packet delivery delay.

Delay Guaranteed Bandwidth-Efficient Multicast Routing in Wireless Multi-hop Networks (다중 홉 무선 네트�p에서 지연을 고려한 멀티케스트 루팅)

  • Sohn, Hee-Seok;Lee, Chae Y.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.2
    • /
    • pp.53-65
    • /
    • 2016
  • Static wireless multi-hop networks, such as wireless mesh networks and wireless sensor networks have proliferated in recent years because of they are easy to deploy and have low installation cost. Two key measures are used to evaluate the performance of a multicast tree algorithm or protocol : end-to-end delay and the number of transmissions. End-to-end delay is the most important measure in terms of QoS because it affects the total throughput in wireless networks. Delay is similar to the hop count or path length from the source to each destination and is directly related to packet success ratio. In wireless networks, each node uses the air medium to transmit data, and thus, bandwidth consumption is related to the number of transmission nodes. A network has many transmitting nodes, which will cause many collisions and queues because of congestion. In this paper, we optimize two metrics through a guaranteed delay scheme. We provide an integer linear programming formulation to minimize the number of transmissions with a guaranteed hop count and preprocessing to solve the aforementioned problem. We extend this scheme not only with the guaranteed minimum hop count, but also with one or more guaranteed delay bounds to compromise two key metrics. We also provide an explanation of the proposed heuristic algorithm and show its performance and results.