• 제목/요약/키워드: Multi-frequency acoustic system

검색결과 68건 처리시간 0.024초

고주파 다주파 음향시스템을 이용한 동물성 플랑크톤의 크기별 생물량 추정 (Zooplankton Biomass and Size Estimation Using a Multi-frequency Acoustic System)

  • 황보규
    • 한국수산과학회지
    • /
    • 제41권1호
    • /
    • pp.54-60
    • /
    • 2008
  • High- and multi-frequency acoustic systems can measure a zooplankton patch successively and estimate the spatial distribution and abundance of zooplankton according to size using a multi-frequency inversion (MFI) method. This study measured zooplankton distribution to a depth of 150m using a multi-frequency acoustic system (TAPS-6), installed on a CTD system with a fluorometer and analyzed it using the MFI method. Simultaneously, zooplankton samples were collected by north pacific standard (NORPAC) net to confirm the species composition. The results showed that the combined method is valuable for estimating the zooplankton profile in detail and investigating the relationship between the zooplankton and phytoplankton profiles.

Survey of Acoustic Frequency Use for Underwater Acoustic Cognitive Technology

  • Cho, A-ra;Choi, Youngchol;Yun, Changho
    • 한국해양공학회지
    • /
    • 제36권1호
    • /
    • pp.61-81
    • /
    • 2022
  • The available underwater acoustic spectrum is limited. Therefore, it is imperative to avoid frequency interference from overlapping frequencies of underwater acoustic equipment (UAE) for the co-existence of the UAE. Cognitive technology that senses idle spectrum and actively avoids frequency interference is an efficient method to facilitate the collision-free operation of multiple UAE with overlapping frequencies. Cognitive technology is adopted to identify the frequency usage of UAE to apply cognitive technology. To this end, we investigated two principle underwater acoustic sources: UAE and marine animals. The UAE is classified into five types: underwater acoustic modem, acoustic positioning system, multi-beam echo-sounder, side-scan sonar, and sub-bottom profiler. We analyzed the parameters of the frequency band, directivity, range, and depth, which play a critical role in the design of underwater acoustic cognitive technology. Moreover, the frequency band of several marine species was also examined. The mid-frequency band from 10 - 40 kHz was found to be the busiest. Lastly, this study provides useful insights into the design of underwater acoustic cognitive technologies, where it is essential to avoid interference among the UAE in this mid-frequency band.

다중 공진 광대역 음향변환기의 대역폭 개선 (Bandwidth Improvement of a Multi-resonant Broadband Acoustic Transducer)

  • 이대재
    • 한국수산과학회지
    • /
    • 제50권5호
    • /
    • pp.605-615
    • /
    • 2017
  • A multi-resonant broadband acoustic transducer with six Tonpilz elements operating at different resonant frequencies in a transducer assembly was fabricated, tested, and analyzed. A compensated transducer, modified by adding series inductance to the developed multi-resonant broadband transducer, was shown to provide improved bandwidth performance with a relatively more uniform frequency response compared with the uncompensated transducer. By controlling the series inductance, flat frequency response characteristics at two frequency bands were obtained over the range 38-52 kHz with 1.1 mH inductance and 50-60 kHz with 0.4 mH inductance. These results suggest that the operating frequency of the developed multi-resonant broadband transducer in a chirp echo sounder can be shifted to a different frequency band that is optimized according to the environment for more effective echo surveys of fishing grounds.

Advanced Computational Dissipative Structural Acoustics and Fluid-Structure Interaction in Low-and Medium-Frequency Domains. Reduced-Order Models and Uncertainty Quantification

  • Ohayon, R.;Soize, C.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.127-153
    • /
    • 2012
  • This paper presents an advanced computational method for the prediction of the responses in the frequency domain of general linear dissipative structural-acoustic and fluid-structure systems, in the low-and medium-frequency domains and this includes uncertainty quantification. The system under consideration is constituted of a deformable dissipative structure that is coupled with an internal dissipative acoustic fluid. This includes wall acoustic impedances and it is surrounded by an infinite acoustic fluid. The system is submitted to given internal and external acoustic sources and to the prescribed mechanical forces. An efficient reduced-order computational model is constructed by using a finite element discretization for the structure and an internal acoustic fluid. The external acoustic fluid is treated by using an appropriate boundary element method in the frequency domain. All the required modeling aspects for the analysis of the medium-frequency domain have been introduced namely, a viscoelastic behavior for the structure, an appropriate dissipative model for the internal acoustic fluid that includes wall acoustic impedance and a model of uncertainty in particular for the modeling errors. This advanced computational formulation, corresponding to new extensions and complements with respect to the state-of-the-art are well adapted for the development of a new generation of software, in particular for parallel computers.

Multiuser chirp modulation for underwater acoustic channel based on VTRM

  • Yuan, Fei;Wei, Qian;Cheng, En
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권3호
    • /
    • pp.256-265
    • /
    • 2017
  • In this paper, an ascheme is proposed for multiuser underwater acoustic communication by using the multi-chirp rate signals. It differs from the well known TDMA (Time Division Multiple Access), FDMA (Frequency Division Multiple Access) or CDMA (Code Division Multiple Access), by assigning each users with different chirp-rate carriers instead of the time, frequency or PN code. Multi-chirp rate signals can be separated from each other by FrFT (Fractional Fourier Transform), which can be regarded as the chirp-based decomposing, and superior to the match filter in the underwater acoustic channel. VTRM (Virtual Time Reverse Mirror) is applied into the system to alleviate the ISI caused by the multipatch and make the equalization more simple. Results of computer simulations and pool experiments prove that the proposed multiuser underwater acoustic communication based on the multi-chirp rate exhibit well performance. Outfield experments carrie out in Xiamen Port show that using about 10 kHz bandwidth, four users could communicate at the same time with 425 bps with low BER and can match the UAC application.

다중음원을 이용한 다중채널 해양 탄성파 탐사 (Marine Seismic Survey using a Multi-source System)

  • 김현도;김진후
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.209-210
    • /
    • 2006
  • Digital technology has been applied to marine seismic survey to develop data processing technology and multi-channel marine seismic survey. In result, high-resolution marine seismic survey ended in a success. Surveys are conducted for various purposes using various frequencies of acoustic sources. A low frequency source is used for deeper penetration and a high frequency source is used for higher resolution survey. In this study, a multi-source system was used for multi-channel marine seismic survey to acquire seismic sections of both low and high frequencies. Variations of depth of penetration and resolution would be used to achieve more accurate analysis of formations. In this study, the multi-source system consists of Bubble Pulser(400 Hz) for low frequency source and Sparker(1.5 kHz) for high frequency source.

  • PDF

Density estimation of euphausiids and copepods by using a multi-frequency method

  • Woo Seok Oh;Geun Chang Park;Jung-Hwa Choi;Hyoung Been Lee;Kyounghoon Lee
    • Fisheries and Aquatic Sciences
    • /
    • 제26권12호
    • /
    • pp.689-697
    • /
    • 2023
  • This study used a multi-frequency acoustic method to assess the density and spatial distribution of dominant zooplankton, euphausiids and copepods, which are representative species of the zooplankton immigrating the sea around Republic of Korea. Acoustic surveys were carried out in the East Sea and South Sea from June 16 to 29, 2017, using the research vessel Tamgu 20th from the National Institute of Fisheries Science. From the results of the acoustic survey, the distribution of euphausiids was relatively higher in the East Sea than in the South Sea. Additionally, although the distribution of copepods was low in all areas, they were abundant in certain areas in the East Sea and the southern area of the Jeju Sea. Euphausiid and copepod density was estimated to be 1.2 g/m2 (CV = 19.1%) and 2.8 g/m2 (CV = 23.5%), respectively.

Hopper WDM을 이용한 FBG(Fiber Bragg Grating) 하이드로폰(Hydrophone)의 다중점신호검출 및 지향성 연구 (A Study on The Multi-point Signal and It's Directivity detection of FBG Hydrophone Using Hopper WDM be in The Making)

  • 김경복
    • 전자공학회논문지
    • /
    • 제52권11호
    • /
    • pp.156-163
    • /
    • 2015
  • 국내에서 개발된 단일모드 균일한 단주기형 광섬유 격자소자(FBG: Fiber Bragg Grating)를 이용하여, 수중에서 음파를 검출할 수 있는 FBG 일체형 Transducer를 설계 및 제작하였다. 이를 통하여 신호검출 시스템구성 시, 최근 제작된 Hopper WDM(특허번호 제10-1502954)을 이용하여 수중에서 다중점신호검출과 지향성 연구를 한 결과, 기존의 광섬유 센서가 지니고 있는 우수한 장점들을 모두 지니고 있을 뿐만 아니라, Sensor Arm 구성이 간단하여 실용화에 큰 장점을 지니고 있다. 제작된 FBG 일체형 트랜스듀서는 30 Hz~2.5KHz 범위에서 주파수 검출이 가능하고, 최적의 공진조건 주파수는 1.2KHz로 나타났다. 또한, 이를 이용한 수중에서 넓은 영역에 대한 다중점 신호 검출을 구현하기 위하여, WDM(Wavelength Division Multiplexing) 방법과 Passive band-pass filter system을 이용하여 FBG Hydrophone Arrays System을 구축하고, 2개의 FBG 일체형 Transducers에서 주파수 200Hz~1.3 KHz대까지 다중점 수중 음파 신호 검출을 성공 하였다. 아울러, 음원의 방향과 각도에 따라 검출된 신호의 세기가 변화되므로 음원의 물체에 대한 방향성 검출이 가능함으로서, 향후 FBG Hydrophone의 실용화 연구에 새로운 기틀을 마련하였다.

A study on the multi-frequency acoustic target strength of krill using a stochastic distorted-wave born approximation (SDWBA) model

  • Wuju Son;Wooseok Oh;Hyoung Sul La;Kyounghoon Lee
    • Fisheries and Aquatic Sciences
    • /
    • 제27권4호
    • /
    • pp.225-230
    • /
    • 2024
  • We examined the dB difference in target strength at multiple frequencies (ΔTS) for the identification of Antarctic krill (Euphausia superba) and ice krill (Euphausia crystallorophias) using a stochastic distorted-wave Born approximation model. Our investigation focused on ΔTS patterns at multiple frequencies in relation to size, along with key acoustic properties influencing TS, including density and sound speed contrast, fatness, and orientation. The findings revealed that the orientation and fatness significantly affect the ΔTS patterns. The results provide insight into the importance of the multi-frequency technique for estimating krill biomass and their ecological interactions with environmental features in the Southern Ocean.