• Title/Summary/Keyword: Multi-fluid

Search Result 836, Processing Time 0.029 seconds

Assessment of the Structural Safety for Light-Weight Steel Twin Car-Ferry for Coastal Voyage (연안 항해용 스틸 쌍동 차도선의 경량화 모델 및 구조안전성 평가)

  • Kim, Jae-hyeong;Lee, Sang-eui;Park, Joo-Shin;Lee, Gyeong-Woo;Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.403-411
    • /
    • 2020
  • This paper discusses the main findings of the development of the twin-hull Car ferry for island freight and passenger transport. The final model had a 19 m wide beam to create enough space for cars on the deck area and thus, enhance the economic feasibility in the market. The vessel had a V-shape with a bulbous bow to minimize the wave-making resistance and the hydrodynamic performance of the ship was verified through computational fluid dynamics. Multi-objective optimization problems of Pareto simulated annealing were used to achieve a weight reduction of approximately 3.9 % and reduce the manufacturing cost. The main results obtained in this study are expected to be useful to engineers and professionals in related industries interested in research on twin catamaran.

Evaluation of Flutter Velocity of Bridge Deck Section using Distributed Computing Environment (분산형 전산환경을 활용한 교량 거더의 플러터 발생풍속 산정)

  • Lee, Kuen-Bae;Kim, Chongam
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.75-75
    • /
    • 2011
  • 본 논문에서는 진동중인 교량 거더에 작용하는 풍하중을 산정하고 그에 따른 플러터 발생풍속을 예측하기 위하여 분산형 전산환경을 활용한 수치해석 연구를 수행하였다. 분산형 전산환경은 웹 포탈을 기반으로 수치해석 환경을 제공하는 수치풍동 시스템으로서, 전산유체역학(CFD : Computational Fluid Dynamics)에 대한 전문지식이 부족한 사용자들도 격자생성, 수치해석자를 이용한 계산, 가시화 등의 전 과정을 편리하게 수행할 수 있는 차세대 토목분야 연구 환경이다. 본 시스템은 그리드스피어(GfidSphere)를 기반으로 구성되었으며, 기본적으로 사용자 관리, 세션 관리, 그룹 관리, 레이아웃 관리 등을 제공하여 사용자가 포탈을 통해서 다양한 서비스를 쉽게 사용할 수 있는 환경을 구축하도록 도와준다. 수치해석을 위한 유체 지배방정식은 2차원 비정상 비압축성 RANS(Reynolds-Averaged Navier-Stokes) 방정식이며, pseudo compressibility 방법을 적용하였다. 비정상 유동장을 해석하기 위하여 이중시간 전진법(dual time stepping)을 사용하였으며, 수렴가속화를 위해 Multi-grid 기법을 적용하였다. 또한 난류 유동장 해석을 위해서 $k-{\omega}$ SST 난류 모델을 사용하였으며, 난류 천이 과정에서의 유동을 모사하기 위하여 Total stress limitation 방법을 적용하였다. 교량 거더의 연직과 회전방향의 2자유도 움직임을 모사하기 위하여 동적격자 기법을 도입하였다. 교량 거더 주변의 비정상 유동해석 결과를 통해, 거더 표면에서 떨어져나가는 크고 작은 와류의 영향으로 양력 및 모멘트 계수 그래프가 중첩된 진폭과 주기를 갖고 주기적으로 나타나는 것을 확인할 수 있었다. 또한 계산된 비정상 공기력을 적용한 2자유도 플러터 방정식을 통하여 플러터 발생풍속을 산정하였다. 최종적으로 본 연구에서 계산된 결과의 타당성을 검증하기 위하여 수치적으로 구한 플러터 발생풍속과 기존의 실험 및 수치해석 결과를 비교하였으며, 결과는 잘 일치하였다.

  • PDF

Two-Dimensional Infinite Element for Dynamic Analysis of Saturated Two-Phase Soil (포화된 2상 지반의 동적해석을 위한 2차원 무한요소)

  • Kim, Jae-Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.67-74
    • /
    • 2005
  • This paper presents a new infinite element for modeling far-field region in dynamic analysis of a fluid-saturated two-phase medium. The infinite element method combined to the infinite element method has been effectively applied to several engineering problems where the full space or half-space medium should be modeled. However, the currently available infinite element for dynamic analysis of two-phase porous medium has a limitation that Pl and P2 waves can only be Included in shape function expressing behavior ol the body. In this paper, the infinite element method is extended to simulate arbitrary number of multi-component waves. For this purpose, the far-field of the porous medium is assumed to be a layered half-space, while the near-field Includes structures as well as irregular soil medium. The accuracy and effectiveness of the proposed element have demonstrated using 1-D and 2-D wave propagation problems.

Effect of critical flow model in MARS-KS code on uncertainty quantification of large break Loss of coolant accident (LBLOCA)

  • Lee, Ilsuk;Oh, Deogyeon;Bang, Youngseog;Kim, Yongchan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.755-763
    • /
    • 2020
  • The critical flow phenomenon has been studied because of its significant effect for design basis accidents in nuclear power plants. Transition points from thermal non-equilibrium to equilibrium are different according to the geometric effect on the critical flow. This study evaluates the uncertainty parameters of the critical flow model for analysis of DBA (Design Basis Accident) with the MARS-KS (Multi-dimensional Analysis for Reactor Safety-KINS Standard) code used as an independent regulatory assessment. The uncertainty of the critical flow model is represented by three parameters including the thermal non-equilibrium factor, discharge coefficient, and length to diameter (L/D) ratio, and their ranges are determined using large-scale Marviken test data. The uncertainty range of the thermal non-equilibrium factor is updated by the MCDA (Model Calibration through Data Assimilation) method. The updated uncertainty range is confirmed using an LBLOCA (Large Break Loss of Coolant Accident) experiment in the LOFT (Loss of Fluid Test) facility. The uncertainty ranges are also used to calculate an LBLOCA of the APR (Advanced Power Reactor) 1400 NPP (Nuclear Power Plants), focusing on the effect of the PCT (Peak Cladding Temperature). The results reveal that break flow is strongly dependent on the degree of the thermal non-equilibrium state in a ruptured pipe with a small L/D ratio. Moreover, this study provides the method to handle the thermal non-equilibrium factor, discharge coefficient, and length to diameter (L/D) ratio in the system code.

Hybrid Control Model of MR Damper for Seismic Response Control of Adjacent Buildings (인접건축물의 지진응답 제어를 위한 MR 감쇠기의 복합제어 모델)

  • Kim, Gee-Cheol;Kang, Joo-Won;Chae, Seoung-Hun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.101-110
    • /
    • 2011
  • Many researchers have attempted to apply semi-active control systems in the civil engineering structures. Recently, magneto-rheological(MR) fluid dampers have been developed. This MR damper is one of semi-active dampers as a new class of smart dampers. This paper discusses the application of MR damper for seismic response control of adjacent buildings subjected to earthquake. Here, a controllable damping force of MR damper that is installed between adjacent buildings is applied to seismic response control. A hybrid model combines skyhook and groundhook control algorithm so that the benefits of each can be combined together. In this paper, hybrid control model are applied to the multi degree of freedom system representative of buildings in order to reduce seismic response of adjacent buildings. And the performance of hybrid control model is compared with that of others. It was demonstrated that hybrid control model or adjacent buildings with MR damper was effective for seismic response control of two adjacent buildings reciprocally.

Performance Test of 2 kW Class Reverse Brayton Refrigeration System (냉동능력 2 kW 급 역브레이튼 극저온 냉각시스템 성능시험)

  • KO, JUNSEOK;LEE, KEUN-TAE;PARK, SEONG-JE;KIM, JONGWOO;CHOO, SANGYOON;HONG, YONG-JU;IN, SEHWAN;PARK, JIHO;KIM, HYOBONG;YEOM, HANKIL
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.5
    • /
    • pp.429-435
    • /
    • 2020
  • This paper describes the experimental study of reverse-Brayton refrigeration system for application to high temperature superconductivity electric devices and LNG re-liquefaction. The reverse-Brayton refrigeration cycle is designed with operating pressure of 0.5 and 1.0 MPa, cooling capacity of 2 kW at 77 K, and neon as a working fluid. The refrigeration system is developed with multi scroll compressor, turbo expander and plate heat exchanger. From experiments, the performance characteristics of used components is measured and discussed for 77-120 K of operating temperature. The developed refrigeration system shows the cooling capacity of 1.23 kW at 77 K and 1.64 kW at 110 K.

A Study on the Diffuser Inlet Shape of Thermocompressor for MED Desalination Plant (다중효용 담수설비용 열압축기의 디퓨져 입구부 형상에 관한 연구)

  • Jin, Chang-Fu;Song, Young-Ho;Kim, Kyung-Keun;Park, Gi-Tae;Chung, Han-Shik;Choi, Du-Youl
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.869-876
    • /
    • 2008
  • A thermocompressor is the equipment which compresses a vapor to a desired discharge pressure. Since it was first used as the evacuation pump for a surface condenser, it has been widely adopted for energy saving systems due to its high working confidence. In the present study, the geometrical analysis of the shape between the jet nozzle and the diffuser inlet, the drag force was calculated by means of the integrated equation of motion and the computational fluid dynamic (CFD) package called FLUENT. The computer simulations were performed to investigate the effects by the various suction flow rates, the distance from jet nozzle outlet to the diffuser inlet and the dimensions of the diffuser inlet section through the iterative calculation. In addition, the results from the CFD analysis on the thermocompressor and the experiments were compared for the verification of the CFD results. In the case of a jet nozzle, the results from the CFD analysis showed a good agreement with the experimental results. Furthermore, in this study, a special attention was paid on the performance of the thermocompressor by varying the diffuser convergence angle of $0.0^{\circ}$, $0.5^{\circ}$, $1.0^{\circ}$, $2.0^{\circ}$, $3.5^{\circ}$ and $4.5^{\circ}$. With the increase of the diffuser convergence angle. the suction capacity was improved up to the degree of $1.0^{\circ}$ while it was decreased over the degree of $1.0^{\circ}$.

Study on the Grinding Characteristic of MWCNT and Al2O3 Composite by Using Planetary Ball Mill (유성 볼밀을 사용한 MWCNT와 Al2O3의 혼합 분쇄 특성에 관한 연구)

  • Seo, Chang-Myung;Kim, Yeong-Geun;Ji, Myoung-Kuk;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.91-96
    • /
    • 2013
  • The present paper focuses on the fabrication of materials with higher thermal conductivity. Nanofluid is a novel transfer prepared by dispersing nanometer-sized solid particles in traditional heat transfer fluid to increase thermal conductivity and heat transfer performance. The purpose of this study is making the nano-size particle. The experiment of MWCNT and $Al_2O_3$ was carried out using a planetary ball mill at several rotation speeds: 200 ~ 400 rpm. The results were examined using scanning electron microscope(SEM). In the case of the MWCNT, it could be more grinding into the small particle in the dry condition and it confirm in the case of the $Al_2O_3$ to be more grinding into the small particle contrary to the MWCNT in the wet condition. In the mixture grinding result of MWCNT and $Al_2O_3$, the dry condition showed the good result in low rotation speed than the wet condition.

Simulations of fluidelastic forces and fretting wear in U-bend tube bundles of steam generators: Effect of tube-support conditions

  • Hassan, Marwan;Mohany, Atef
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.157-169
    • /
    • 2016
  • The structural integrity of tube bundles represents a major concern when dealing with high risk industries, such as nuclear steam generators, where the rupture of a tube or tubes will lead to the undesired mixing of the primary and secondary fluids. Flow-induced vibration is one of the major concerns that could compromise the structural integrity. The vibration is caused by fluid flow excitation. While there are several excitation mechanisms that could contribute to these vibrations, fluidelastic instability is generally regarded as the most severe. When this mechanism prevails, it could cause serious damage to tube arrays in a very short period of time. The tubes are therefore stiffened by means of supports to avoid these vibrations. To accommodate the thermal expansion of the tube, as well as to facilitate the installation of these tube bundles, clearances are allowed between the tubes and their supports. Progressive tube wear and chemical cleaning gradually increases the clearances between the tubes and their supports, which can lead to more frequent and severe tube/support impact and rubbing. These increased impacts can lead to tube damage due to fatigue and/or wear at the support locations. This paper presents simulations of a loosely supported multi-span U-bend tube subjected to turbulence and fluidelastic instability forces. The mathematical model for the loosely-supported tubes and the fluidelastic instability model is presented. The model is then utilized to simulate the nonlinear response of a U-bend tube with flat bar supports subjected to cross-flow. The effect of the support clearance as well as the support offset are investigated. Special attention is given to the tube/support interaction parameters that affect wear, such as impact and normal work rate.

Multi-phase Flow Modeling of Vapor Explosion Propagation (증기폭발 전파과정 해석을 위한 다상유동 모델 개발)

  • Park, I. K.;Park, G. C.;K. H. Bang
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.103-117
    • /
    • 1996
  • A mathematical model of vapor explosion propagation is presented. The model predict two-dimensional, transient flow fields and energies of the four fluid phases of melt drop, fragmented debris, liquid coolant and vapor coolant by solving a set of governing equations with the relevant constitutive relations. These relations include melt fragmentation, coolant-phase-change, and heat and momentum exchange models. To allow thermodynamic non-equilibrium between the coolant liquid and vapor, an equation of state for oater is uniquely formulated. A multiphase code, TRACER, has been developed based on this mathematical formulation. A set of base calculations for tin/water explosions show that the model predicts the explosion propagation speed and peak pressure in a reasonable degree although the quantitative agreement relies strongly on the parameters in the constitutive relations. A set of calculations for sensitivity studies on these parameters have identified the important initial conditions and relations. These are melt fragmentation rate, momentum exchange function, heat transfer function and coolant phase change model as well as local vapor fractions and fuel fractions.

  • PDF