• Title/Summary/Keyword: Multi-fluid

Search Result 836, Processing Time 0.022 seconds

Study on the Structure Optimization and the Operation Scheme Design of a Double-Tube Once-Through Steam Generator

  • Wei, Xinyu;Wu, Shifa;Wang, Pengfei;Zhao, Fuyu
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1022-1035
    • /
    • 2016
  • A double-tube once-through steam generator (DOTSG) consisting of an outer straight tube and an inner helical tube is studied in this work. First, the structure of the DOTSG is optimized by considering two different objective functions. The tube length and the total pressure drop are considered as the first and second objective functions, respectively. Because the DOTSG is divided into the subcooled, boiling, and superheated sections according to the different secondary fluid states, the pitches in the three sections are defined as the optimization variables. A multi-objective optimization model is established and solved by particle swarm optimization. The optimization pitch is small in the subcooled region and superheated region, and large in the boiling region. Considering the availability of the optimum structure at power levels below 100% full power, we propose a new operating scheme that can fix the boundaries between the three heat-transfer sections. The operation scheme is proposed on the basis of data for full power, and the operation parameters are calculated at low power level. The primary inlet and outlet temperatures, as well as flow rate and secondary outlet temperature are changed according to the operation procedure.

Numerical Simulation of Transport Phenomena for Laser Full Penetration Welding

  • Zhao, Hongbo;Qi, Huan
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.13-22
    • /
    • 2017
  • In laser full penetration welding process, full penetration hole(FPH) is formed as a result of force balance between the vapor pressure and the surface tension of the surrounding molten metal. In this work, a three-dimensional numerical model based on a conserved-mass level-set method is developed to simulate the transport phenomena during laser full penetration welding process, including full penetration keyhole dynamics. Ray trancing model is applied to simulate multi-reflection phenomena in the keyhole wall. The ghost fluid method and continuum method are used to deal with liquid/vapor interface and solid/liquid interface. The effects of processing parameters including laser power and scanning speed on the resultant full penetration hole diameter, laser energy distribution and energy absorption efficiency are studied. The model is validated against experimental results. The diameter of full penetration hole calculated by the simulation model agrees well with the coaxial images captured during laser welding of thin stainless steel plates. Numerical simulation results show that increase of laser power and decrease of welding speed can enlarge the full penetration hole, which decreases laser energy efficiency.

Design Optimization of a Pin-Fin Type Heat Sink (핀-휜형 방열판의 설계 최적화)

  • 김형렬;박경우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.860-869
    • /
    • 2003
  • Design optimization of the heat sink with 7${\times}$7 square pin-fins is performed numerically using the Computational Fluid Dynamics (CFD) and the Computer Aided Optimization (CAO). In the pin-fins heat sink, the optimum design variables for fin height (h), fin width (w), and fan-to-heat sink distance (c) can be achieved when the thermal resistance ($\theta$$_{j}$) at the junction and the overall pressure drop ($\Delta$p) are minimized simultaneously. To complete the optimization, the finite volume method for calculating the objective functions, the BFGS method for solving the unconstrained non-linear optimization problem, and the weighting method for predicting the multi-objective problem are used. The results show that the optimum design variable for the weighting coefficient of 0.5 are as follows: w=4.653 mm, h=59.215 mm, and c=2.667 mm. In this case, the objective functions are predicted as 0.56K/W of thermal resistance and 6.91 Pa of pressure drop. The Pareto optimal solutions are also presented.re also presented.d.

Inverse Model Control of An ER Damper System

  • Cho Jeong-Mok;Jung Taeg-Eun;Kim Dong-Hyeon;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.64-69
    • /
    • 2006
  • Due to the inherent nonlinear nature of Electro-rheological (ER) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the nonlinear damping force model is made to identify the properties of the ER damper using higher order spectrum. The higher order spectral analysis is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. Also, this paper presents an inverse model of the ER damper, i.e., the model can predict the required voltage so that the ER damper can produce the desired force for the requirement of vibration control of vehicle suspension systems. The inverse model is constructed by using a multi-layer perceptron neural network. A quarter-car suspension model is considered in this paper for analysis and simulation. Simulation results show that the proposed inverse model of ER damper can obtain control voltage of ER damper for required damping force.

Resonance and Response of the Submerged Dual Buoy/Porous-Membrane Breakwaters in Oblique Seas

  • Kee, S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.22-32
    • /
    • 2001
  • The numerical investigation of obliquely incident wave interactions with fully submerged dual buoy/porous-membrane floating breakwaters placed in parallel with spacing is studied based on linear potential theory and Darcy's law. The numerical solutions are obtained by using a discrete-membrane dynamic model and second-kind modified Bessel function distribution over the entire boundaries of fluid regions. First, numerical solutions for an idealized dual submerged system without buoys are obtained. Second, a more practical dual submerged system with membrane tension provided by buoys at its tops is investigated by the multi-domain boundary element method particularly devised for dual buoy/porous-membrane problems with gaps. The velocity potentials of wave motion are coupled with porous-membrane deformation, and solved simultaneously since the boundary condition on porous-membrane is not known in advance. The effects of varying permeability on membranes and wave characteristics are discussed for the optimum design parameters of systems previously studied. The inclusion of permeability on membrane eliminates the resonances that aggravate the breakwater performance. The system is highly efficient when waves generated by the buoys and membranes were mutually canceled and its energy at resonance frequency dissipates through fine pores on membranes.

  • PDF

Numerical Simulation of 3D Free-Surface Flows by Using CIP-based and FV-based Methods

  • Yang, Kyung-Kyu;Nam, Bo-Woo;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.136-143
    • /
    • 2011
  • In this paper, three-dimensional free-surface flows are simulated by using two different numerical methods, the constrained interpolation profile (CIP)-based and finite volume (FV)-based methods. In the CIP-based method, the governing equations are solved on stationary staggered Cartesian grids by a finite difference method, and an immersed boundary technique is applied to deal with wave-body interactions. In the FV-based method, the governing equations are solved by applying collocated finite volume discretization, and body-fitted meshes are used. A free-surface boundary is considered as the interface of the multi-phase flow with air and water, and a volumeof-fluid (VOF) approach is applied to trace the free surface. Among many variations of the VOF-type method, the tangent of hyperbola for interface capturing (THINC) and the compressive interface capturing scheme for arbitrary meshes (CICSAM) techniques are used in the CIP-based method and FV-based method, respectively. Numerical simulations have been carried out for dam-breaking and wave-body interaction problems. The computational results of the two methods are compared with experimental data and their differences are observed.

Turbomachinery design by a swarm-based optimization method coupled with a CFD solver

  • Ampellio, Enrico;Bertini, Francesco;Ferrero, Andrea;Larocca, Francesco;Vassio, Luca
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.2
    • /
    • pp.149-170
    • /
    • 2016
  • Multi-Disciplinary Optimization (MDO) is widely used to handle the advanced design in several engineering applications. Such applications are commonly simulation-based, in order to capture the physics of the phenomena under study. This framework demands fast optimization algorithms as well as trustworthy numerical analyses, and a synergic integration between the two is required to obtain an efficient design process. In order to meet these needs, an adaptive Computational Fluid Dynamics (CFD) solver and a fast optimization algorithm have been developed and combined by the authors. The CFD solver is based on a high-order discontinuous Galerkin discretization while the optimization algorithm is a high-performance version of the Artificial Bee Colony method. In this work, they are used to address a typical aero-mechanical problem encountered in turbomachinery design. Interesting achievements in the considered test case are illustrated, highlighting the potential applicability of the proposed approach to other engineering problems.

Numerical Analysis of Thermal and Flow Characteristics for an Optimum Design of Automotive Catalytic Converter (자동차용 촉매변환기의 최적설계를 위한 열 및 유동특성에 대한 수치적 연구)

  • Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.841-855
    • /
    • 1999
  • In the present work, the effect of a flow maldistribution on the thermal and conversion response of 8 monolith catalytic converter is Investigated. To achieve this goal, a combined chemical reaction and multi-dimensional fluid dynamic mathematical model has been developed. The present results show that flow uniformity within the monolith brick has 8 great impact on light-off performance of the catalytic converter. In the case of lower flow uniformity, large portions of the monolith remain cold due to locally concentrated high velocities and CO, HC are unconverted during warm-up period, which loads to retardation of light-off. It has been also found that the heat-up pattern of the monolith ill similar to the flow distribution profile, In the early stage of the reaction. It may be concluded that flow maldistribution can cause a significant retardation of the light-off and hence can eventually worsen tho conversion efficiency of automotive catalytic converter.

A Study on the Thermal Conductivity of Carbon-Nanotube Nanofluids (탄소 나노튜브 나노유체의 열전도도에 대한 연구)

  • Kim, Bong-Hun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.275-283
    • /
    • 2007
  • An experimental study was conducted to investigate the effect of the morphology of CNT (Carbon Nanotube) on the thermal conductivity of suspensions. The effective thermal conductivities of the samples were measured using a steady-state cut bar apparatus method. Enhancements based on the thermal conductivity of the base fluid are presented as functions of both the volume fraction and the temperature. Although functionalized SWNT (Single-Walled Carbon Nanotube) produced more stable and homogeneous suspensions, the addition of small amounts of surfactant to suspensions of 'as produced' SWNT demonstrated a greater increase in effective thermal conductivity than functionalized SWNT alone. The effective thermal conductivity enhancement corresponding to 1.0% by volume approached 10%, which was observed to be lower than expected, but more than twice the values, 3.5%, obtained for similar tests conducted using aluminum oxide suspensions. However, for suspensions of MWNT (Multi-Walled Carbon Nanotube), the degree of enhancement was measured to be approximately 37%. It was postulated that the effect of clustering, resulting from the multiple heat-flow passages constituted by interconnecting neighboring CNT clusters, played an important role in significant enhancement of effective thermal conductivity.

A Numerical Study on Solidity Characteristics of the Cross-flow Power Turbine(CPT) (횡류형 파워 터빈(CPT)에서 솔리디티 영향에 관한 수치해석 연구)

  • Chung, Kwang-Seop;Kim, Chul-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.562-566
    • /
    • 2010
  • Wind energy is one of the most general natural resources in the world. However, as of today, generating electricity out of wind energy is only available from big wind generator, Furthermore, an axial-flow turbine is the only way to produce electricity in the big wind generator. This paper is for the guidance of drawing impact fact about power turbine using cross-flow type transferring wind energy to electricity energy. It will find the ideal value which enables to make cross-flow power turbine(CPT) using computational fluid dynamics(CFD) code. This study tries to analyze the "Solidity" characteristics. We can find out turbine-blade number through CFD. CFD is using "Fluent_ver 6.3.16", and the data from its result will judge fan-blade performance through specific torque and specific power from each "Solidity" model. Based upon the above, we will make cross-flow power turbine of multi-blade centrifugal fan instead of axial-flow type.