• Title/Summary/Keyword: Multi-fluid

Search Result 831, Processing Time 0.026 seconds

A Study on the Fluid Mixing Analysis for the Shell Wall Thinning Mitigation by Design Modification of a Feedwater Heater Impingement Baffle (급수가열기 충격판 설계변경에 따른 동체감육 완화에 관한 유동해석 연구)

  • Kim K. H.;Hwang K. M.;Jin T. E.
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.2
    • /
    • pp.35-43
    • /
    • 2005
  • Feedwater heaters of many nuclear power plants have recently experienced wall thinning damage, which will increase as operating time progresses. As it is judged that the wall thinning damages have generated due to local fluid behavior around the impingement baffle installed in downstream of the high pressure turbine extraction steam line to avoid colliding directly with the tubes, numerical analyses using PHOENICS code were performed for two models with original clogged impingement baffle and modified multi-hole impingement baffle. To identify the relation between wall thinning and fluid behavior, the local velocity components in x-, y-, and z-directions based on the numerical analysis for the model with the clogged impingement baffle were compared with the wall thickness data by ultrasonic test. From the comparison of the numerical analysis results and the wall thickness data, the local velocity component only in the y-direction, and not in the x- and z-direction, was analogous to the wall thinning configuration. From the result of the numerical analysis for the modified impingement baffle to mitigate the shell wall thinning, it was identified that the shell wall thinning may be controlled by the reduction of the local velocity in the y-direction.

  • PDF

A Study on the As-Built Leakage Diagnosis of Main Steam Drain Valves for Nuclear Power Plants by Multi-measuring Technique (다중계측기법을 이용한 원전 주증기배수밸브의 현상태 누설진단에 관한 연구)

  • Kim, Sung-Young;Kim, Young-Bum;Kim, Do-Hyeong;Lee, Sang-Gok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2606-2611
    • /
    • 2008
  • The high energy fluid leakage from the high temperature and high differential pressure drop system of NPPs (Nuclear Power Plants) decreases efficiency and consequently leads to considerable economic loss due to less power production. Also, the leakage possibly damages critical parts of components such as valve and trim with the effect of cavitation, flashing, and erosion, etc. and deteriorates its performance. Thus, in this study, we diagnosed the as-is leakage for four (4) main steam drain valves and two (2) steam traps of Yonggwang 1,2 units during normal operation by using multi-measuring technique and observed the occurrence of fine leakage. In the course of measuring fluid leakage, the sign of fine leakage is estimated to be the leakage from orifice. By converting the leakage to energy loss, it is equivalent to the amount of several hundred thousand won per each unit, which supports the basis for the justification of fine leakage.

  • PDF

Development of a Simulation Program to Predict the Performance of the Multi-grade Lubricant before Blending Base Oil with Additives (기유와 첨가제 혼합 전 다등급 윤활유의 성능 예측 시뮬레이션 프로그램 개발)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • Generally, to product multi-grade oil like engine oil, a sort of mineral base oil is mixed with a fundamental additive package liquid and a polymer liquid as viscosity index improver in order to improve the lubricating property of base oil. That is, engine oil is the mixture of more than two fluids. Specially, a polymeric type liquid cannot be seen as the linear viscosity like Newtonian fluids. In this research, by using the governing equation describing non-Newtonian hydrodynamic lubrication related with the mixture of incompressible fluids based on the principle of continuum mechanics, it will be compared the bearing performance between the mixture of each liquid to be blended and multi-grade engine oil as a single fluid in a high speed hydrodynamic journal bearing. Further, it is to be found the way estimating the performance of the blended multi-grade engine lubricant in a journal bearing in advance before blending by using the physical properties of mineral base oil, fundamental additive liquid and polymer liquid of viscosity index improver. So, it can be reduced the number of trial and error to get the wanted lubricant by selecting the proper volume fraction of each liquid to satisfy the expected performance and estimating in advance the performance of various multi-grade oils before blending. Therefore, it can be shorten the developing time and saved the developing cost.

Design Strategies for Multi-Stage Axial Turbines (다단 축류터빈 공력설계 및 공력성능 향상기법)

  • Kang, Young-Seok;Rhee, DongHo;Cha, BongJun;Yang, SooSeok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.78-82
    • /
    • 2014
  • This paper describes a brief aerodynamic design procedure of multi-stage axial turbine. The design procedure was established including one dimensional scratch design, through flow analysis with empirical correlations, two dimensional airfoil design and three dimensional airfoil stacking. Detailed aerodynamic performance assessment was done with full three dimensional CFD method at the design and off design conditions to construct turbine performance map. With the present method, aerodynamic design procedure of 1st and 2nd stages of high pressure turbine for 10,000lbf class turbofan engine was introduced.

Numerical Simulation of Plate Finned-Tubes Evaporator (평판핀이 부착된 증발기의 시뮬레이션)

  • Son, B.J.;Min, M.S.;Choi, S.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.4
    • /
    • pp.297-304
    • /
    • 1989
  • Development of a more satisfactory program of computing the performance on a multi-tube evaporator with continuous plate fins is attempted in this study. The fluid flow involving a change of phase make the flow properties and fluid friction factor of refrigerants, the heat transfer coefficients of refrigerant and air sides vary significantly. Taking such variations into account, a useful program is developed to predict the steady state performance of a multi-tube evaporator. The program was applied to an evaporator which has outside diameter of 10.05mm, inside diameter of 9.35mm, length of 5.4m and two rows arraied staggered. Then the variations of refrigerant quality, temperature, pressure, velocity, enthalpy, specific volume and air temperature, tube temperature were discussed. Satisfactory results were presented that the degree of superheat at the outlet side was $4.4^{\circ}C$ and the air temperature drop between the inlet and outlet of the air conditioner was $10^{\circ}C$.

  • PDF

Physics-based Surrogate Optimization of Francis Turbine Runner Blades, Using Mesh Adaptive Direct Search and Evolutionary Algorithms

  • Bahrami, Salman;Tribes, Christophe;von Fellenberg, Sven;Vu, Thi C.;Guibault, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.209-219
    • /
    • 2015
  • A robust multi-fidelity optimization methodology has been developed, focusing on efficiently handling industrial runner design of hydraulic Francis turbines. The computational task is split between low- and high-fidelity phases in order to properly balance the CFD cost and required accuracy in different design stages. In the low-fidelity phase, a physics-based surrogate optimization loop manages a large number of iterative optimization evaluations. Two derivative-free optimization methods use an inviscid flow solver as a physics-based surrogate to obtain the main characteristics of a good design in a relatively fast iterative process. The case study of a runner design for a low-head Francis turbine indicates advantages of integrating two derivative-free optimization algorithms with different local- and global search capabilities.

NUMERICAL ANALYSIS OF FLOW AROUND RECTANGULAR CYLINDERS WITH VARIOUS SIDE RATIOS

  • Rokugou Akira;Okajima Atsushi;Gutierrez Isaac
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Three-dimensional numerical analysis of the flow around rectangular cylinders with various side ratios, D/H, from 0.2 to 2.0, was carried out for Reynolds number of 10³ by using a multi-directional finite difference method on a regular-arranged multi-grid. The predicted results are in good agreement with the experimental data. It is found that fluid dynamic characteristics of rectangular cylinders alternate between the high-pressure mode and the low-pressure mode of the base pressure for D/H=0.2-0.6. We show that this phenomenon is induced by the change of the flow pattern around rectangular cylinders.

Vortex-Induced Vibrations of a Circular Cylinder at Low Reynolds Numbers

  • Lee, Minhyung;Lee, Sung-Yeoul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1628-1637
    • /
    • 2003
  • The vortex-induced vibrations of a circular cylinder at low Reynolds (Re) numbers are simulated by applying a method of the two-dimensional computational fluid dynamics coupled with the structural dynamics based on the multi-physics. The fluid solver is first tested on the case of a fixed cylinder at Re$\leq$160, and shows a good agreement with the previous high-resolution numerical results. The present study then reports on the detailed findings concerning the vibrations of an elastic cylinder with two degrees of translational freedom for a number of cases in which Re is fixed at 200, a reduced damping parameter Sg=0.01, 0.1, 1.0, 10.0 and the mass ratio M$\^$*/ = 1, 10.

Efficient Super-element Structural Vibration Analyses of a Large Wind-turbine Rotor Blade Considering Rotational and Aerodynamic Load Effects (회전 및 풍하중 가진 효과를 고려한 대형 풍력발전 로터의 효율적인 슈퍼요소 구조진동해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Park, Kang-Kyun;Kim, Yu-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.651-658
    • /
    • 2009
  • In this study, computer applied engineering(CAE) techniques are fully used to efficiently conduct structural and dynamic analyses of a huge composite rotor blade using super-element. Computational fluid dynamics(CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade. Structural vibration analysis is conducted based on the non-linear finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results are presented for comparison and the structural dynamic behaviors of the rotor blade are investigated herein.

Parametric Design of Axial Fan for Air-Conditioning Unit in terms of Aerodynamic Performance and Noise Level (공조용 축류홴 설계 및 설계변수에 따른 성능과 소음비교)

  • Lee, Seung-Jin;Choi, Go-Bong;Cho, Hong-Jun;Song, Woo-Seog;Lee, Seung-Bae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.3
    • /
    • pp.24-29
    • /
    • 2010
  • Axial fans for an air-conditioning unit are designed to equip the system with an expected flow-rate and low noise level by applying the blade design method of multi-sectioning and local camber generation. In this study, the distributions of chord length, stagger angle, and camber angle are globally and locally determined for the given specific speed, which is considered to be relatively high. The mock-up fans are observed to satisfy the aerodynamic performance and the noise level for the system simultaneously and discussed in terms of local flow patterns related to the emitted noise.